Official code for SMVF
Sequential Multi-View Fusion Network for Fast LiDAR Point Motion Estimation, Gang Zhang, Xiaoyan Li, Zhenhua Wang. (https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136820282.pdf) Accepted by ECCV2022
- [2022-07-03] SMVF is accepted by ECCV 2022
- [2022-03-07] SMVF achieves 1st place in SemanticKITTI Moving Object Segmentation leaderboard.
CUDA>=10.1
Pytorch>=1.5.1
PyYAML@5.4.1
scipy@1.3.1
cd deep_point
python setup.py install
Please download the SemanticKITTI dataset to the folder SemanticKITTI
and the structure of the folder should look like:
./
├──
├── ...
└── dataset/
├──sequences
├── 00/
│ ├── velodyne/
| | ├── 000000.bin
| | ├── 000001.bin
| | └── ...
│ └── labels/
| ├── 000000.label
| ├── 000001.label
| └── ...
├── 08/ # for validation
├── 11/ # 11-21 for testing
└── 21/
└── ...
And download the object bank on the SemanticKITTI to the folder object_bank_semkitti
and the structure of the folder should look like:
./
├── bicycle
├── bicyclist
├── car
├── motorcycle
├── motorcyclist
├── other-vehicle
├── person
├── truck
python3 -m torch.distributed.launch --nproc_per_node=8 train.py --config config/config_smvf_sgd_ohem_vfe_k2_fp16_48epoch.py
python3 -m torch.distributed.launch --nproc_per_node=8 evaluate.py --config config/config_smvf_sgd_ohem_vfe_k2_fp16_48epoch.py --start_epoch 0 --end_epoch 47