Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Perf: Toom-3 for Fp6 in R1CS #1131

Merged
merged 6 commits into from
May 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified internal/stats/latest.stats
Binary file not shown.
143 changes: 143 additions & 0 deletions std/algebra/emulated/fields_bls12381/e6.go
Original file line number Diff line number Diff line change
@@ -1,8 +1,11 @@
package fields_bls12381

import (
"math/big"

bls12381 "github.com/consensys/gnark-crypto/ecc/bls12-381"
"github.com/consensys/gnark/frontend"
"github.com/consensys/gnark/internal/frontendtype"
)

type E6 struct {
Expand Down Expand Up @@ -79,7 +82,116 @@ func (e Ext6) Sub(x, y *E6) *E6 {
}
}

// Mul multiplies two E6 elmts
func (e Ext6) Mul(x, y *E6) *E6 {
if ft, ok := e.api.(frontendtype.FrontendTyper); ok {
switch ft.FrontendType() {
case frontendtype.R1CS:
return e.mulToom3OverKaratsuba(x, y)
case frontendtype.SCS:
return e.mulKaratsubaOverKaratsuba(x, y)
}
}
return e.mulKaratsubaOverKaratsuba(x, y)
}

func (e Ext6) mulToom3OverKaratsuba(x, y *E6) *E6 {
// Toom-Cook-3x over Karatsuba:
// We start by computing five interpolation points – these are evaluations of
// the product x(u)y(u) with u ∈ {0, ±1, 2, ∞}:
//
// v0 = x(0)y(0) = x.A0 * y.A0
// v1 = x(1)y(1) = (x.A0 + x.A1 + x.A2)(y.A0 + y.A1 + y.A2)
// v2 = x(−1)y(−1) = (x.A0 − x.A1 + x.A2)(y.A0 − y.A1 + y.A2)
// v3 = x(2)y(2) = (x.A0 + 2x.A1 + 4x.A2)(y.A0 + 2y.A1 + 4y.A2)
// v4 = x(∞)y(∞) = x.A2 * y.A2

v0 := e.Ext2.Mul(&x.B0, &y.B0)

t1 := e.Ext2.Add(&x.B0, &x.B2)
t2 := e.Ext2.Add(&y.B0, &y.B2)
t3 := e.Ext2.Add(t2, &y.B1)
v1 := e.Ext2.Add(t1, &x.B1)
v1 = e.Ext2.Mul(v1, t3)

t3 = e.Ext2.Sub(t2, &y.B1)
v2 := e.Ext2.Sub(t1, &x.B1)
v2 = e.Ext2.Mul(v2, t3)

t1 = e.Ext2.MulByConstElement(&x.B1, big.NewInt(2))
t2 = e.Ext2.MulByConstElement(&x.B2, big.NewInt(4))
v3 := e.Ext2.Add(t1, t2)
v3 = e.Ext2.Add(v3, &x.B0)
t1 = e.Ext2.MulByConstElement(&y.B1, big.NewInt(2))
t2 = e.Ext2.MulByConstElement(&y.B2, big.NewInt(4))
t3 = e.Ext2.Add(t1, t2)
t3 = e.Ext2.Add(t3, &y.B0)
v3 = e.Ext2.Mul(v3, t3)

v4 := e.Ext2.Mul(&x.B2, &y.B2)

// Then the interpolation is performed as:
//
// a0 = v0 + β((1/2)v0 − (1/2)v1 − (1/6)v2 + (1/6)v3 − 2v4)
// a1 = −(1/2)v0 + v1 − (1/3)v2 − (1/6)v3 + 2v4 + βv4
// a2 = −v0 + (1/2)v1 + (1/2)v2 − v4
//
// where β is the cubic non-residue.
//
// In-circuit, we compute 6*x*y as
// c0 = 6v0 + β(3v0 − 3v1 − v2 + v3 − 12v4)
// a1 = -(3v0 + 2v2 + v3) + 6(v1 + 2v4 + βv4)
// a2 = 3(v1 + v2 - 2(v0 + v4))
//
// and then divide a0, a1 and a2 by 6 using a hint.

a0 := e.Ext2.MulByConstElement(v0, big.NewInt(6))
t1 = e.Ext2.Sub(v0, v1)
t1 = e.Ext2.MulByConstElement(t1, big.NewInt(3))
t1 = e.Ext2.Sub(t1, v2)
t1 = e.Ext2.Add(t1, v3)
t2 = e.Ext2.MulByConstElement(v4, big.NewInt(12))
t1 = e.Ext2.Sub(t1, t2)
t1 = e.Ext2.MulByNonResidue(t1)
a0 = e.Ext2.Add(a0, t1)

a1 := e.Ext2.MulByConstElement(v0, big.NewInt(3))
t1 = e.Ext2.MulByConstElement(v2, big.NewInt(2))
a1 = e.Ext2.Add(a1, t1)
a1 = e.Ext2.Add(a1, v3)
t1 = e.Ext2.MulByConstElement(v4, big.NewInt(2))
t1 = e.Ext2.Add(t1, v1)
t2 = e.Ext2.MulByNonResidue(v4)
t1 = e.Ext2.Add(t1, t2)
t1 = e.Ext2.MulByConstElement(t1, big.NewInt(6))
a1 = e.Ext2.Sub(t1, a1)

a2 := e.Ext2.Add(v1, v2)
a2 = e.Ext2.MulByConstElement(a2, big.NewInt(3))
t1 = e.Ext2.Add(v0, v4)
t1 = e.Ext2.MulByConstElement(t1, big.NewInt(6))
a2 = e.Ext2.Sub(a2, t1)

res := e.divE6By6([6]*baseEl{&a0.A0, &a0.A1, &a1.A0, &a1.A1, &a2.A0, &a2.A1})
return &E6{
B0: E2{
A0: *res[0],
A1: *res[1],
},
B1: E2{
A0: *res[2],
A1: *res[3],
},
B2: E2{
A0: *res[4],
A1: *res[5],
},
}
}

func (e Ext6) mulKaratsubaOverKaratsuba(x, y *E6) *E6 {
// Karatsuba over Karatsuba:
// Algorithm 13 from https://eprint.iacr.org/2010/354.pdf
t0 := e.Ext2.Mul(&x.B0, &y.B0)
t1 := e.Ext2.Mul(&x.B1, &y.B1)
t2 := e.Ext2.Mul(&x.B2, &y.B2)
Expand Down Expand Up @@ -307,6 +419,37 @@ func (e Ext6) DivUnchecked(x, y *E6) *E6 {
return &div
}

func (e Ext6) divE6By6(x [6]*baseEl) [6]*baseEl {
res, err := e.fp.NewHint(divE6By6Hint, 6, x[0], x[1], x[2], x[3], x[4], x[5])
if err != nil {
// err is non-nil only for invalid number of inputs
panic(err)
}

y0 := *res[0]
y1 := *res[1]
y2 := *res[2]
y3 := *res[3]
y4 := *res[4]
y5 := *res[5]

// xi == 6 * yi
x0 := e.fp.MulConst(&y0, big.NewInt(6))
x1 := e.fp.MulConst(&y1, big.NewInt(6))
x2 := e.fp.MulConst(&y2, big.NewInt(6))
x3 := e.fp.MulConst(&y3, big.NewInt(6))
x4 := e.fp.MulConst(&y4, big.NewInt(6))
x5 := e.fp.MulConst(&y5, big.NewInt(6))
e.fp.AssertIsEqual(x[0], x0)
e.fp.AssertIsEqual(x[1], x1)
e.fp.AssertIsEqual(x[2], x2)
e.fp.AssertIsEqual(x[3], x3)
e.fp.AssertIsEqual(x[4], x4)
e.fp.AssertIsEqual(x[5], x5)

return [6]*baseEl{&y0, &y1, &y2, &y3, &y4, &y5}
}

func (e Ext6) Select(selector frontend.Variable, z1, z0 *E6) *E6 {
b0 := e.Ext2.Select(selector, &z1.B0, &z0.B0)
b1 := e.Ext2.Select(selector, &z1.B1, &z0.B1)
Expand Down
33 changes: 33 additions & 0 deletions std/algebra/emulated/fields_bls12381/e6_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,39 @@ func TestMulFp6(t *testing.T) {

}

type e6MulVariant struct {
A, B, C E6
}

func (circuit *e6MulVariant) Define(api frontend.API) error {
e := NewExt6(api)
expected1 := e.mulKaratsubaOverKaratsuba(&circuit.A, &circuit.B)
expected2 := e.mulToom3OverKaratsuba(&circuit.A, &circuit.B)
e.AssertIsEqual(expected1, &circuit.C)
e.AssertIsEqual(expected2, &circuit.C)
return nil
}

func TestMulFp6Variants(t *testing.T) {

assert := test.NewAssert(t)
// witness values
var a, b, c bls12381.E6
_, _ = a.SetRandom()
_, _ = b.SetRandom()
c.Mul(&a, &b)

witness := e6Mul{
A: FromE6(&a),
B: FromE6(&b),
C: FromE6(&c),
}

err := test.IsSolved(&e6Mul{}, &witness, ecc.BN254.ScalarField())
assert.NoError(err)

}

type e6Square struct {
A, C E6
}
Expand Down
32 changes: 32 additions & 0 deletions std/algebra/emulated/fields_bls12381/hints.go
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ import (
"math/big"

bls12381 "github.com/consensys/gnark-crypto/ecc/bls12-381"
"github.com/consensys/gnark-crypto/ecc/bls12-381/fp"
"github.com/consensys/gnark/constraint/solver"
"github.com/consensys/gnark/std/math/emulated"
)
Expand All @@ -22,6 +23,7 @@ func GetHints() []solver.Hint {
divE6Hint,
inverseE6Hint,
squareTorusHint,
divE6By6Hint,
// E12
divE12Hint,
inverseE12Hint,
Expand Down Expand Up @@ -149,6 +151,36 @@ func squareTorusHint(nativeMod *big.Int, nativeInputs, nativeOutputs []*big.Int)
})
}

func divE6By6Hint(nativeMod *big.Int, nativeInputs, nativeOutputs []*big.Int) error {
return emulated.UnwrapHint(nativeInputs, nativeOutputs,
func(mod *big.Int, inputs, outputs []*big.Int) error {
var a, c bls12381.E6

a.B0.A0.SetBigInt(inputs[0])
a.B0.A1.SetBigInt(inputs[1])
a.B1.A0.SetBigInt(inputs[2])
a.B1.A1.SetBigInt(inputs[3])
a.B2.A0.SetBigInt(inputs[4])
a.B2.A1.SetBigInt(inputs[5])

var sixInv fp.Element
sixInv.SetString("6")
sixInv.Inverse(&sixInv)
c.B0.MulByElement(&a.B0, &sixInv)
c.B1.MulByElement(&a.B1, &sixInv)
c.B2.MulByElement(&a.B2, &sixInv)

c.B0.A0.BigInt(outputs[0])
c.B0.A1.BigInt(outputs[1])
c.B1.A0.BigInt(outputs[2])
c.B1.A1.BigInt(outputs[3])
c.B2.A0.BigInt(outputs[4])
c.B2.A1.BigInt(outputs[5])

return nil
})
}

// E12 hints
func inverseE12Hint(nativeMod *big.Int, nativeInputs, nativeOutputs []*big.Int) error {
return emulated.UnwrapHint(nativeInputs, nativeOutputs,
Expand Down
Loading
Loading