-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
420 lines (339 loc) · 16.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import argparse
import torch
from torchvision import transforms
from PIL import Image
import time
import math
import datetime
import os
import numpy as np
from copy import deepcopy
from torch import nn, optim, autograd
from torch.backends import cudnn
from torch.nn import functional as F
from model import TPSSpatialTransformer, RTSpatialTransformer, DeformAwareGenerator, DiscriminatorPatch, Extra
from splice_utils.splice import Splice
from tqdm import tqdm
from lpips_loss import LPIPS
from util import str2list, str2bool, accumulate, requires_grad
import warnings
warnings.filterwarnings('ignore')
cudnn.benchmark = True
torch.manual_seed(3202)
def d_logistic_loss(real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def d_r1_loss(real_pred, real_img):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real.pow(2).reshape(
grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred):
_loss = F.softplus(-fake_pred).mean()
return _loss
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(
fake_img.shape[2] * fake_img.shape[3]
)
grad, = autograd.grad(
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True
)
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * \
(path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_mean.detach(), path_lengths
def warp_reg_loss(warp_flow):
dx_reg = 1 - F.cosine_similarity(warp_flow[:, :, :-1, :-1], warp_flow[:, :, :-1, 1:])
dy_reg = 1 - F.cosine_similarity(warp_flow[:, :, :-1, :-1], warp_flow[:, :, 1:, :-1])
return (dx_reg + dy_reg).sum()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--style', type=str, default='style1')
parser.add_argument('--source', type=str, default='source1.png')
parser.add_argument('--target', type=str, default='target1.png')
parser.add_argument('--style_ref', type=str, default=None)
parser.add_argument('--ckpt', type=str, default='checkpoints/stylegan2-ffhq-config-f.pt')
parser.add_argument('--lpips_dir', type=str, default='checkpoints', help='location of lpips_loss models. Used alex')
parser.add_argument('--img_res', type=int, default=1024)
parser.add_argument('--num_iter', type=int, default=500)
parser.add_argument('--batch', type=int, default=4)
parser.add_argument('--warp_res', type=str, default='32,64')
parser.add_argument('--warp_gs', type=str, default='10,10')
parser.add_argument('--cross_mode', type=str, default='f')
parser.add_argument('--within_mode', type=str, default='f')
parser.add_argument('--cross_layers', type=str, default='5,11')
parser.add_argument('--within_layers', type=str, default='5')
parser.add_argument('--g_lr', type=float, default=2e-3)
parser.add_argument('--d_lr', type=float, default=2e-3)
parser.add_argument('--stn_lr', type=float, default=5e-6)
parser.add_argument('--rtstn_lr', type=float, default=1e-4)
parser.add_argument('--adv_wt', type=float, default=1)
parser.add_argument('--a2agg_wt', type=float, default=50000.)
parser.add_argument('--a2agr_wt', type=float, default=50000.)
parser.add_argument('--a2b_wt', type=float, default=6)
parser.add_argument('--warp_wt', type=float, default=1e-6)
parser.add_argument('--use_stn', type=str2bool, default=True)
parser.add_argument('--use_rtstn', type=str2bool, default=True)
parser.add_argument('--tune_g', type=str2bool, default=True)
parser.add_argument('--stn_accum', type=float, default=0.995)
parser.add_argument('--g_accum', type=float, default=0.5 ** (32 / (10 * 1000)))
parser.add_argument('--hp', type=int, default=1)
parser.add_argument('--swap_layer', type=int, default=8)
args = parser.parse_args()
assert args.use_stn or args.tune_g, 'at least one of these two args to be `True`'
device = args.device
hp = args.hp
num_iter = args.num_iter
g_accum = args.g_accum
stn_accum = args.stn_accum
rt_warp_resolutions = tps_warp_resolutions = str2list(args.warp_res)
warp_grid_sizes = str2list(args.warp_gs)
latent_dim = 512
mean_path_length = 0
transform = transforms.Compose([transforms.Resize((args.img_res, args.img_res)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# initialize generator and discriminator
original_generator = DeformAwareGenerator(args.img_res, latent_dim, 8, 2, resolutions=tps_warp_resolutions,
rt_resolutions=rt_warp_resolutions).to(device).eval()
ckpt = torch.load(args.ckpt, map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=True)
generator = deepcopy(original_generator).eval()
g_ema = deepcopy(original_generator).eval()
g_module = generator
accumulate(g_ema, generator, 0)
discriminator = DiscriminatorPatch(args.img_res).to(device).eval()
discriminator.load_state_dict(ckpt['d'], strict=True)
# for patch-level adversarial loss
extra = Extra().to(device)
# deformation modules
stns = TPSSpatialTransformer(resolutions=tps_warp_resolutions, grid_size=warp_grid_sizes).to(device)
rt_stns = RTSpatialTransformer(resolutions=rt_warp_resolutions).to(device)
stns_ema = TPSSpatialTransformer(resolutions=tps_warp_resolutions, grid_size=warp_grid_sizes).to(device)
rt_stns_ema = RTSpatialTransformer(resolutions=rt_warp_resolutions).to(device)
# DINO feature extractor
splice = Splice(device=device)
softmax = nn.Softmax(dim=0)
mean_latent = original_generator.mean_latent(1).unsqueeze(0).repeat(1, original_generator.n_latent, 1)
swap = [i for i in range(args.swap_layer, original_generator.n_latent)]
# load images (aligned)
style_path = os.path.join('data/style_images_aligned', args.target)
style_aligned = Image.open(style_path).convert('RGB')
style_image = transform(style_aligned).to(device).unsqueeze(0)
real_path = os.path.join('data/style_images_aligned', args.source)
real_aligned = Image.open(real_path).convert('RGB')
real_image = transform(real_aligned).to(device).unsqueeze(0)
if args.style_ref is None:
args.style_ref = args.target
ref_path = os.path.join('data/style_images_aligned', args.style_ref)
ref_aligned = Image.open(ref_path).convert('RGB')
ref_image = transform(ref_aligned).to(device).unsqueeze(0)
# initialize optimizers
params_d = []
if args.tune_g:
params_d.append({'params': generator.parameters(), 'lr': args.g_lr})
if args.use_stn:
params_d.append({'params': stns.parameters(), 'lr': args.stn_lr})
if args.use_rtstn:
params_d.append({'params': rt_stns.parameters(), 'lr': args.rtstn_lr})
g_optim = optim.Adam(params_d, betas=(.1, 0.99))
d_optim = optim.Adam(discriminator.parameters(), lr=args.d_lr, betas=(0, 0.99))
e_optim = optim.Adam(extra.parameters(), lr=args.d_lr, betas=(0, 0.99))
mode_cross = args.cross_mode
mode_within = args.within_mode
vit_layer_id_cross = str2list(args.cross_layers)
vit_layer_id_within = str2list(args.within_layers)
# inverse source reference for color alignment
w_plus_src = mean_latent.clone()
w_plus_src.requires_grad_(True)
params = [{'params': w_plus_src, 'lr': 2e-3}]
optimizer = optim.Adam(params)
loss_lpips = LPIPS(model_dir=args.lpips_dir).to(device)
pbar = tqdm(range(300))
for idx in pbar:
Gw, _ = original_generator(w_plus_src, input_is_latent=True)
l1_loss = F.l1_loss(Gw, real_image)
lpips_loss = loss_lpips(Gw, real_image).mean()
loss = l1_loss + lpips_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
exp_latent_src = w_plus_src.clone()
# inverse target reference for color alignment
w_plus_tgt = mean_latent.clone()
w_plus_tgt.requires_grad_(True)
params = [{'params': w_plus_tgt, 'lr': 2e-3}]
optimizer = optim.Adam(params)
loss_lpips = LPIPS(model_dir=args.lpips_dir).to(device)
pbar = tqdm(range(300))
for idx in pbar:
Gw, _ = original_generator(w_plus_tgt, input_is_latent=True)
l1_loss = F.l1_loss(Gw, style_image)
lpips_loss = loss_lpips(Gw, style_image).mean()
loss = l1_loss + lpips_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
exp_latent_tgt = w_plus_tgt.clone()
del loss_lpips, optimizer
# training
with torch.no_grad():
# for cross-domain loss (cross)
ref_src_feat = splice.calculate_features(real_image, mode=mode_cross, layers=vit_layer_id_cross)
ref_tgt_feat = splice.calculate_features(style_image, mode=mode_cross, layers=vit_layer_id_cross)
ref_src_feat /= ref_src_feat.norm(dim=[1, 2], keepdim=True)
ref_tgt_feat /= ref_tgt_feat.norm(dim=[1, 2], keepdim=True)
d_ref = ref_tgt_feat - ref_src_feat
d_ref_norm = d_ref / d_ref.norm(dim=[1, 2], keepdim=True)
d_ref_norm = d_ref_norm.repeat(args.batch, 1, 1)
# for in-domain loss (within)
ref_src_ssim = splice.calculate_self_sim(real_image, mode=mode_within, layers=vit_layer_id_within)
ref_tgt_ssim = splice.calculate_self_sim(style_image, mode=mode_within, layers=vit_layer_id_within)
loss_dict = {}
start_time = time.time()
for idx in range(num_iter):
# fine-tune discriminator
requires_grad(generator, False)
requires_grad(stns, False)
requires_grad(rt_stns, False)
requires_grad(discriminator, True)
requires_grad(extra, True)
with torch.no_grad():
sample_w = generator.get_latent(
torch.randn([args.batch, latent_dim]).to(device)).unsqueeze(1).repeat(1, generator.n_latent, 1)
fake_img, _ = generator(sample_w, input_is_latent=True, stns=stns, rt_stns=rt_stns)
fake_pred = discriminator(fake_img, extra=extra, flag=1, p_ind=np.random.randint(0, hp))
real_pred = discriminator(ref_image, extra=extra, flag=1, p_ind=np.random.randint(0, hp)) # one-shot
d_loss = d_logistic_loss(real_pred, fake_pred)
loss_dict['d_loss'] = d_loss
d_optim.zero_grad()
e_optim.zero_grad()
d_loss.backward()
d_optim.step()
e_optim.step()
del d_loss
d_regularize = idx % 10 == 0
if d_regularize:
real_img = ref_image.clone()
real_img.requires_grad = True
real_pred = discriminator(real_img, extra=extra, flag=1, p_ind=np.random.randint(0, 3))
real_pred = real_pred.view(real_img.size(0), -1)
real_pred = real_pred.mean(dim=1).unsqueeze(1)
r1_loss = d_r1_loss(real_pred, real_img)
discriminator.zero_grad()
extra.zero_grad()
(10 / 2 * r1_loss * 10 +
0 * real_pred[0]).backward()
d_optim.step()
e_optim.step()
loss_dict["r1"] = r1_loss
del r1_loss
# fine-tune generator
requires_grad(generator, True)
requires_grad(stns, True)
requires_grad(rt_stns, True)
requires_grad(discriminator, False)
requires_grad(extra, False)
with torch.no_grad():
in_latent = generator.get_latent(
torch.randn([args.batch, latent_dim]).to(device)).unsqueeze(1).repeat(1, generator.n_latent, 1)
with torch.no_grad():
in_latent_src = in_latent.clone()
in_latent_src[:, swap] = exp_latent_src[:, swap]
sam_src_img, _ = original_generator(in_latent_src, input_is_latent=True)
in_latent_tgt = in_latent.clone()
in_latent_tgt[:, swap] = exp_latent_tgt[:, swap]
img, warp_flows1 = generator(in_latent_tgt, input_is_latent=True, stns=stns, rt_stns=rt_stns)
# adv loss
img_g, warp_flows = generator(in_latent, input_is_latent=True, stns=stns, rt_stns=rt_stns)
fake_pred = discriminator(img_g, extra=extra, flag=1, p_ind=np.random.randint(0, hp))
g_loss = g_nonsaturating_loss(fake_pred) * args.adv_wt
loss_dict['g_loss'] = g_loss
# cross-domain loss
with torch.no_grad():
sam_src_feat_ = splice.calculate_features(sam_src_img, mode=mode_cross, layers=vit_layer_id_cross)
sam_src_feat = sam_src_feat_ / sam_src_feat_.clone().norm(dim=[1, 2], keepdim=True)
sam_tgt_feat_ = splice.calculate_features(img, mode=mode_cross, layers=vit_layer_id_cross)
sam_tgt_feat = sam_tgt_feat_ / sam_tgt_feat_.clone().norm(dim=[1, 2], keepdim=True)
d_sam = sam_tgt_feat - sam_src_feat
d_sam_norm = d_sam / d_sam.norm(dim=[1, 2], keepdim=True)
cross_loss = (1 - F.cosine_similarity(
d_sam_norm.view(args.batch, -1), d_ref_norm.view(args.batch, -1)).mean()) * args.a2b_wt
loss_dict['cross'] = cross_loss
# in-domain consistency loss by self-similarity
with torch.no_grad():
sam_src_ssim = splice.calculate_self_sim(sam_src_img, mode=mode_within, layers=vit_layer_id_within)
sam_tgt_ssim = splice.calculate_self_sim(img, mode=mode_within, layers=vit_layer_id_within)
# generated-generated pair
src_C1, tgt_C1 = [], []
for sam1 in range(args.batch):
for sam2 in range(sam1 + 1, args.batch):
with torch.no_grad():
sc = F.cosine_similarity(sam_src_ssim[sam1].view(-1), sam_src_ssim[sam2].view(-1), dim=0)
src_C1.append(sc)
tc = F.cosine_similarity(sam_tgt_ssim[sam1].view(-1), sam_tgt_ssim[sam2].view(-1), dim=0)
tgt_C1.append(tc)
src_C1s = softmax(torch.stack(src_C1, dim=0))
tgt_C1s = softmax(torch.stack(tgt_C1, dim=0))
mse1 = ((tgt_C1s - src_C1s) ** 2)
wt = torch.sqrt(mse1.detach()) / torch.max(torch.sqrt(mse1.detach()))
within_loss1 = (mse1 * wt).mean() * args.a2agg_wt
# generated-reference pair
src_C2, tgt_C2 = [], []
for sam in range(args.batch):
with torch.no_grad():
sc = F.cosine_similarity(ref_src_ssim.view(-1), sam_src_ssim[sam].view(-1), dim=0)
src_C2.append(sc)
tc = F.cosine_similarity(ref_tgt_ssim.view(-1), sam_tgt_ssim[sam].view(-1), dim=0)
tgt_C2.append(tc)
src_C2s = softmax(torch.stack(src_C2, dim=0))
tgt_C2s = softmax(torch.stack(tgt_C2, dim=0))
mse2 = ((tgt_C2s - src_C2s) ** 2)
wt = torch.sqrt(mse2.detach()) / torch.max(torch.sqrt(mse2.detach()))
within_loss2 = (mse2 * wt).mean() * args.a2agr_wt
within_loss = within_loss1 + within_loss2
loss_dict['within'] = within_loss
# warp reg
warp_loss = 0.
for flow in warp_flows:
warp_loss += warp_reg_loss(flow)
for flow in warp_flows1:
warp_loss += warp_reg_loss(flow)
warp_loss *= args.warp_wt
loss_dict['warp_loss'] = warp_loss
loss = cross_loss + within_loss + warp_loss + g_loss
loss_dict['loss'] = loss
g_optim.zero_grad()
loss.backward()
g_optim.step()
del cross_loss, within_loss, warp_loss, g_loss
g_regularize = idx % 10 == 0
if g_regularize:
path_batch_size = 2
latents = generator.get_latent(
torch.randn([args.batch, latent_dim]).to(device)).unsqueeze(1).repeat(1, generator.n_latent, 1)
fake_img, _ = generator(latents, input_is_latent=True)
path_loss, mean_path_length, path_lengths = g_path_regularize(fake_img, latents, mean_path_length)
generator.zero_grad()
weighted_path_loss = 2 * 10 * path_loss
weighted_path_loss.backward()
g_optim.step()
accumulate(g_ema, g_module, g_accum)
accumulate(stns_ema, stns, stn_accum)
accumulate(rt_stns_ema, rt_stns, stn_accum)
if (idx + 1) % 50 == 0:
print(f'[{idx + 1}/{num_iter}]', end=' ')
for k in loss_dict.keys():
print(f'{k}={loss_dict[k]:.8f},', end=' ')
elapsed = time.time() - start_time
elapsed = str(datetime.timedelta(seconds=elapsed))
print(f'Elapsed [{elapsed}]')
os.makedirs('./outputs/models', exist_ok=True)
torch.save({'g': g_ema.state_dict(),
'stns': stns_ema.state_dict(),
'rtstn': rt_stns_ema.state_dict()}, f'./outputs/models/{args.style}.pt')