-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdata_boot_gs.py
269 lines (249 loc) · 10.7 KB
/
data_boot_gs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# THIS FILE IS FOR EXPERIMENTS, USE image_iter.py FOR NORMAL IMAGE LOADING.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import logging
import sys
import numbers
import math
import sklearn
import datetime
import numpy as np
import cv2
import mxnet as mx
from mxnet import ndarray as nd
from mxnet import io
from mxnet import recordio
from mxnet import image
sys.path.append(os.path.join(os.path.dirname(__file__), 'common'))
import face_preprocess
import multiprocessing
logger = logging.getLogger()
class FaceImageIter(io.DataIter):
def __init__(self, mx_pretrained = None, ctx = None, ctx_num = 2, path_imgrec = None, mean = None,
data_shape = None, batch_size = 90, batch_size_mining = 1, bin_dir = None, threshold = 0.007,
shuffle = True, rand_mirror = True, data_name = 'data', label_name = 'softmax_label', **kwargs):
super(FaceImageIter, self).__init__()
assert path_imgrec
if path_imgrec:
logging.info('loading recordio %s...', path_imgrec)
path_imgidx = path_imgrec[0:-4]+".idx"
self.imgrec = recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') # pylint: disable=redefined-variable-type
s = self.imgrec.read_idx(0)
header, _ = recordio.unpack(s)
if header.flag>0:
print('header label', header.label)
self.header0_1 = (int(header.label[0]), int(header.label[1]))
self.imgidx = range(1, int(header.label[0]))
self.id2range = {}
self.seq_identity = range(int(header.label[0]), int(header.label[1]))
for identity in self.seq_identity:
s = self.imgrec.read_idx(identity)
header, _ = recordio.unpack(s)
a,b = int(header.label[0]), int(header.label[1])
self.id2range[identity] = (a,b)
count = b-a
print('id2range', len(self.id2range))
else:
self.imgidx = list(self.imgrec.keys)
self.seq = []
self.oseq = self.imgidx
print("ori samples: ",len(self.oseq))
self.threshold = threshold
self.provide_data = [(data_name, (batch_size,) + data_shape)]
self.provide_data_mining = [(data_name, (batch_size_mining,) + data_shape)]
self.provide_label = [(label_name, (batch_size,))]
self.provide_label_mining = [(label_name, (batch_size_mining,))]
self.batch_size_mining = batch_size_mining
self.batch_size = batch_size
self.data_shape = data_shape
self.check_data_shape(data_shape)
self.shuffle = shuffle
self.image_size = '%d,%d'%(data_shape[1],data_shape[2])
self.rand_mirror = rand_mirror
print('rand_mirror', rand_mirror)
self.cur = 0
self.is_init = False
self.mx_pretrained = mx_pretrained
self.mx_model = None
self.ctx_num = ctx_num
self.ctx = ctx
self.model_t = None
self.oseq_cur = 0
self.save = 0
self.bin_dir = bin_dir
self.first_reset = 1
self.nbatch = 0
self.mean = mean
self.nd_mean = None
if self.mean:
self.mean = np.array(self.mean, dtype=np.float32).reshape(1,1,3)
self.nd_mean = mx.nd.array(self.mean).reshape((1,1,3))
def check_data_shape(self, data_shape):
"""Checks if the input data shape is valid"""
if not len(data_shape) == 3:
raise ValueError('data_shape should have length 3, with dimensions CxHxW')
if not data_shape[0] == 3:
raise ValueError('This iterator expects inputs to have 3 channels.')
def check_valid_image(self, data):
"""Checks if the input data is valid"""
if len(data[0].shape) == 0:
raise RuntimeError('Data shape is wrong')
def postprocess_data(self, datum):
"""Final postprocessing step before image is loaded into the batch."""
return nd.transpose(datum, axes=(2, 0, 1))
def imdecode(self, s):
"""Decodes a string or byte string to an NDArray.
See mx.img.imdecode for more details."""
img = mx.image.imdecode(s) # mx.ndarray
return img
def time_reset(self):
self.time_now = datetime.datetime.now()
def time_elapsed(self):
time_now = datetime.datetime.now()
diff = time_now - self.time_now
return diff.total_seconds()
def reset(self):
"""Resets the iterator to the beginning of the data."""
if self.first_reset == 1:
print("first reset")
#all_layers = self.mx_model.symbol.get_internals()
# print('all_layers: ',all_layers)
if self.model_t is None:
vec = self.mx_pretrained.split(',')
assert len(vec) > 1
prefix = vec[0]
epoch = int(vec[1])
print('loading', prefix, epoch)
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
all_layers = sym.get_internals()
print('all_layers:',all_layers)
sym = all_layers['blockgrad1_output']
self.model_t = mx.mod.Module(symbol=sym, context=self.ctx)
self.model_t.bind(data_shapes=self.provide_data_mining, label_shapes=self.provide_label_mining)
self.model_t.set_params(arg_params, aux_params)
ba = 0
tag = []
data = nd.zeros(self.provide_data_mining[0][1])
label = nd.zeros(self.provide_label_mining[0][1])
outfilew = os.path.join(self.bin_dir, "%d_noiselist.txt" % (self.save))
with open(outfilew, 'w') as fp:
while True:
bb = min(ba + self.batch_size_mining, len(self.oseq))
print("start bb,ba",ba,bb)
if ba >= bb:
break
for i in xrange(ba, bb):
_idx = self.oseq[i]
s = self.imgrec.read_idx(_idx)
header, img = recordio.unpack(s)
img = self.imdecode(img)
data[i - ba][:] = self.postprocess_data(img)
label0 = header.label
if not isinstance(label0, numbers.Number):
label0 = label0[0]
# print('label0', label0)
label[i - ba][:] = label0
tag.append((int(label0), _idx))
db = mx.io.DataBatch(data=(data,), label=(label,))
self.model_t.forward(db, is_train=False)
net_out = self.model_t.get_outputs()
net_P = mx.nd.softmax(net_out[0], axis=1)
net_P = net_P.asnumpy()
for ii in range(bb-ba):
#print('label:',label[ii])
#print('tag:',tag[ii][0])
P=net_P[ii]
#print(P)
#print(max(P))
if max(P)<self.threshold:
line = '%d %d %s %s\n' % (tag[ii][0], tag[ii][1], max(P), P[tag[ii][0]])
fp.write(line)
else:
self.seq.append(tag[ii][1])
tag=[]
ba = bb
self.save += 1
print("Initialize done: ",len(self.oseq),len(self.seq),len(self.oseq)-len(self.seq))
self.first_reset += 1
else:
print('call reset()')
self.cur = 0
if self.shuffle:
random.shuffle(self.seq)
self.first_reset += 1
def next_sample(self):
"""Helper function for reading in next sample."""
#set total batch size, for example, 1800, and maximum size for each people, for example 45
if self.seq is not None:
while True:
if self.cur >= len(self.seq):
raise StopIteration
idx = self.seq[self.cur]
self.cur += 1
if self.imgrec is not None:
s = self.imgrec.read_idx(idx)
header, img = recordio.unpack(s)
label = header.label
if not isinstance(label, numbers.Number):
label = label[0]
return label, img, None, None
else:
label, fname, bbox, landmark = self.imglist[idx]
return label, self.read_image(fname), bbox, landmark
else:
s = self.imgrec.read()
if s is None:
raise StopIteration
header, img = recordio.unpack(s)
return header.label, img, None, None
def next(self):
if not self.is_init:
self.reset()
self.is_init = True
"""Returns the next batch of data."""
#print('in next', self.cur, self.labelcur)
self.nbatch+=1
batch_size = self.batch_size
c, h, w = self.data_shape
batch_data = nd.empty((batch_size, c, h, w))
if self.provide_label is not None:
batch_label = nd.empty(self.provide_label[0][1])
i = 0
try:
while i < batch_size:
label, s, bbox, landmark = self.next_sample()
_data = self.imdecode(s)
_data = _data.astype('float32')
_data = image.RandomGrayAug(.2)(_data)
if random.random() < 0.2:
_data = image.ColorJitterAug(0.2, 0.2, 0.2)(_data)
if self.rand_mirror:
_rd = random.randint(0,1)
if _rd==1:
_data = mx.ndarray.flip(data=_data, axis=1)
if self.nd_mean is not None:
_data = _data.astype('float32')
_data -= self.nd_mean
_data *= 0.0078125
data = [_data]
try:
self.check_valid_image(data)
except RuntimeError as e:
logging.debug('Invalid image, skipping: %s', str(e))
continue
#print('aa',data[0].shape)
#data = self.augmentation_transform(data)
#print('bb',data[0].shape)
for datum in data:
assert i < batch_size, 'Batch size must be multiples of augmenter output length'
#print(datum.shape)
batch_data[i][:] = self.postprocess_data(datum)
batch_label[i][:] = label
i += 1
except StopIteration:
if i<batch_size:
raise StopIteration
return io.DataBatch([batch_data], [batch_label], batch_size - i)