-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathprepareTemplates.py
216 lines (187 loc) · 7.45 KB
/
prepareTemplates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import torch
import torch.nn.functional as F
import numpy as np
import torchvision.utils as vutils
import os
from PIL import Image
import PIL
from config import opt,bMirror,nDep
import sys
##normal coordinate grid
def getCanonic(x):
theta= torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float).view(1,2,3)
flow= F.affine_grid(theta, x.size())#output Tensor of size (N×H×W×2), here N=1
return flow
## when exceeding grid -- start from beginning of grid
def wrap(f):
for i in range(f.shape[1]):##dim3=1 is const
if f[0,i,0,1]>1:
delta = int((f[0,i,0,1]-1)/2)+1
f[0,i,:,1]-=2*delta
if f[0,i,0,1]<-1:
delta = int((f[0,i,0,1]+1)/2)-1
f[0,i,:,1]-=2*delta
for i in range(f.shape[2]):##dim3=0 is const
if f[0,0,i,0]>1:
delta = int((f[0,0,i,0]-1)/2)+1
f[0,:,i,0]-=2*delta
if f[0,0,i,0]<-1:
delta = int((f[0,0,i,0]+1)/2)-1
f[0,:,i,0]-=2*delta
return f
## when exceeding grid -- mirror and go back
def reflect_mirror(f):
for i in range(f.shape[1]):##dim3=1 is const
if f[0,i,0,1]>3:
old = f[0,i,0,1]*1.0
delta = int((f[0,i,0,1]-3)/4)+1
f[0,i,:,1]-=4*delta
if f[0,i,0,1]>3 or f[0,i,0,1]<-1:
print (old,f[0,i,0,1],delta)
if f[0,i,0,1]<-1:
old = f[0,i,0,1]*1.0
delta = int((f[0,i,0,1]+1)/4)-1
f[0,i,:,1]-=4*delta
if f[0,i,0,1]>3 or f[0,i,0,1]<-1:
print (old,f[0,i,0,1],delta)
for i in range(f.shape[2]):##dim3=0 is const
if f[0,0,i,0]>3:
old=f[0,0,i,0]*1.0
delta = int((f[0,0,i,0]-3)/4)+1
f[0,:,i,0]-=4*delta
if f[0,0,i,0]>3 or f[0,0,i,0]<-1:
print (old,f[0,0,i,0],delta)
if f[0,0,i,0]<-1:
old=f[0,0,i,0]*1.0
delta = int((f[0,0,i,0]+1)/4)-1
f[0,:,i,0]-=4*delta
if f[0,0,i,0]>3 or f[0,0,i,0]<-1:
print (old,f[0,0,i,0],delta)
# print ("Max",f.max(),f.min())
assert(f[:,:,:,1].max().item()<=3)
assert(f[:,:,:,1].min().item()>=-1)
assert(f[:,:,:,0].max().item()<=3)
assert(f[:,:,:,0].min().item()>=-1)
f=torch.where(torch.ByteTensor(f>1), 2-f, f) #so 1:3 maps to 1:-1 - -reflection
return f
##interpolation mode when output size is bigger than input image size
## @param x coordinates in any range
## @output coordinates scaled with some logic in -1,1
def reflect(x):
if bMirror:
return reflect_mirror(x)
else:
return wrap(x)
# z is 1x3xHxW
def randomTile(flow,z):
f=flow*1.0
ratioW=flow.shape[1]/float(z.shape[2])
ratioH=flow.shape[1+1]/float(z.shape[2+1])
#print (ratioH,ratioW)
f[:,:,:,0]*= ratioH
f[:,:,:,0+1]*= ratioW
f[:,:,:,0]+=np.random.rand()*40
f[:,:,:,1]+=np.random.rand()*40
f=reflect(f)
out = F.grid_sample(z, f)#,padding_mode="reflection"
sys.stdout.flush()
print ("crop ready",out.shape)
return out
##read an image file and return pytorch tensor in range -1 to 1
## @param bDel -- if true crop to some power of 2
def getImage(name, bDel=False):
img = Image.open(name)
if not bDel:##so texture, may rescale
if opt.textureScale != 1:
img = img.resize((int(img.size[0] * opt.textureScale), int(img.size[1] * opt.textureScale)), PIL.Image.LANCZOS)
else:
if opt.contentScale != 1:
img = img.resize((int(img.size[0] * opt.contentScale), int(img.size[1] * opt.contentScale)), PIL.Image.LANCZOS)
img = np.array(img)/255.0*2-1
if bDel:##put to some power of 2 size, due to split routines
delW = img.shape[1]%2**(nDep+1)
delH = img.shape[0]%2**(nDep+1)
if delH >0:
img = img[:-delH]
if delW >0:
img = img[:,:-delW]
img = img.swapaxes(2,1).swapaxes(1,0)
img= torch.FloatTensor(img[np.newaxis])
print ("image input",img.shape)
return img
def getTemplates(opt,N,vis=True,path=str(bMirror)):
x=getImage(opt.contentPath + os.listdir(opt.contentPath)[0], True)
if N ==0:
return x
flow=getCanonic(x)
nTex = len(os.listdir(opt.texturePath))
out = torch.FloatTensor(N,3,x.shape[2],x.shape[3]).half()
files=os.listdir(opt.texturePath)
for n in range(N):
z=getImage(opt.texturePath + files[n % nTex])
out[n:n+1] = randomTile(flow,z)
if vis:
vutils.save_image(out[:8].float(),path+'templates.jpg', normalize=True,nrow=4,padding=10)##limit to 25 the shown templates
return torch.cat([x,flow.permute(0,3,1,2)],1),out
##@param target is always (B,3,H,W). RGB image. The canonical coordinates of the used templates will be added to last 2 channels
##@param template is always (N,3,H,W)
def randCrop(target,template,npx,canonicC):
N = template.shape[0]
nbatch=target.shape[0]
te =torch.FloatTensor(nbatch,N,3,npx,npx)
target=torch.cat([target,target[:,:2]*0],1)##0 coords, to be filled later
for i in range(nbatch):
r = np.random.randint(template.shape[2] - npx)
r2 = np.random.randint(template.shape[3] - npx)
te[i:i+1] = template[:,:,r:r+npx,r2:r2+npx].float()##all N textures set
coords = canonicC[:,3:5,r:r+npx,r2:r2+npx]##so they belong to template, for RAW mode
target[i,3:5]=coords##hack -- get coordinates here, belonging to templates
return target,te
##only crop from single image!!
##@param target is always (1,3,H,W)
##@param template is always (N,3,H,W)
def randCropOverfit(dummyBatch,template,npx,target):
nbatch = dummyBatch.shape[0]
N = template.shape[0]
te =torch.FloatTensor(nbatch,N,3,npx,npx)
ba =torch.FloatTensor(nbatch,5,npx,npx)##cont + coord
for i in range(nbatch):
r= np.random.randint(target.shape[2]-npx)
r2= np.random.randint(target.shape[3]-npx)
ba[i:i+1] = target[:,:,r:r+npx,r2:r2+npx]
te[i:i+1] = template[:,:,r:r+npx,r2:r2+npx].float()##all N textures set
coords = target[:,3:5,r:r+npx,r2:r2+npx]##so they belong to template, for RAW mode
ba[i,3:5]=coords##hack -- get coordinates here, belonging to templates
return ba,te
#BxNx3xHxW templates
#BxNxHxW mix
def getTemplateMixImage(mix, templates, mode='bilinear'):
if type(mix) is list:
out=[]
for xx in mix:
out.append(getTemplateMixImage(xx, templates, mode))
return out
nFT = templates.shape[4] // mix.shape[3]
if nFT > 1:#if mix diff size-- upsample
mix = F.upsample(mix, scale_factor=nFT, mode=mode)
N = mix.shape[1]
B=mix.shape[0]
H=mix.shape[2]
W=mix.shape[3]
C=templates.shape[2]##usually 3, unless attention on another level
mix = mix.permute(0,2,3,1).contiguous().view(-1,1,N)
templates = templates.permute(0,3,4,1,2).contiguous().view(-1,N,C)
#print ("mix templ",mix.shape,templates.shape)
prod = torch.bmm(mix,templates)##should be BHWx3
return prod.view(B,H,W,C).permute(0,3,1,2)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--contentPath', required=True, help='path to dataset')
parser.add_argument('--texturePath', required=True, help='path to dataset')
parser.add_argument('--N', type=int, default=4)
opt = parser.parse_args()
print(opt)
getTemplates(opt,opt.N,vis=True)