-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathPSGAN.py
143 lines (118 loc) · 4.74 KB
/
PSGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from __future__ import print_function
import random
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from utils import TextureDataset, setNoise, learnedWN
import torchvision.transforms as transforms
import torchvision.utils as vutils
import sys
from network import weights_init,Discriminator,calc_gradient_penalty,NetG
from config import opt,bMirror,nz,nDep,criterion
import time
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
cudnn.benchmark = True
canonicT=[transforms.RandomCrop(opt.imageSize),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
mirrorT= []
if bMirror:
mirrorT += [transforms.RandomVerticalFlip(),transforms.RandomHorizontalFlip()]
transformTex=transforms.Compose(mirrorT+canonicT)
dataset = TextureDataset(opt.texturePath,transformTex,opt.textureScale)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize,
shuffle=True, num_workers=int(opt.workers))
N=0
ngf = int(opt.ngf)
ndf = int(opt.ndf)
desc="fc"+str(opt.fContent)+"_ngf"+str(ngf)+"_ndf"+str(ndf)+"_dep"+str(nDep)+"-"+str(opt.nDepD)
if opt.WGAN:
desc +='_WGAN'
if opt.LS:
desc += '_LS'
if bMirror:
desc += '_mirror'
if opt.textureScale !=1:
desc +="_scale"+str(opt.textureScale)
netD = Discriminator(ndf, opt.nDepD, bSigm=not opt.LS and not opt.WGAN)
##################################
netG =NetG(ngf, nDep, nz)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print ("device",device)
Gnets=[netG]
if opt.zPeriodic:
Gnets += [learnedWN]
for net in [netD] + Gnets:
try:
net.apply(weights_init)
except Exception as e:
print (e,"weightinit")
pass
net=net.to(device)
print(net)
NZ = opt.imageSize//2**nDep
noise = torch.FloatTensor(opt.batchSize, nz, NZ,NZ)
fixnoise = torch.FloatTensor(opt.batchSize, nz, NZ*4,NZ*4)
real_label = 1
fake_label = 0
noise=noise.to(device)
fixnoise=fixnoise.to(device)
# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))#netD.parameters()
optimizerU = optim.Adam([param for net in Gnets for param in list(net.parameters())], lr=opt.lr, betas=(opt.beta1, 0.999))
for epoch in range(opt.niter):
for i, data in enumerate(dataloader, 0):
t0 = time.time()
sys.stdout.flush()
# train with real
netD.zero_grad()
text, _ = data
text=text.to(device)
output = netD(text)
errD_real = criterion(output, output.detach()*0+real_label)
errD_real.backward()
D_x = output.mean()
# train with fake
noise=setNoise(noise)
fake = netG(noise)
output = netD(fake.detach())
errD_fake = criterion(output, output.detach()*0+fake_label)
errD_fake.backward()
D_G_z1 = output.mean()
errD = errD_real + errD_fake
if opt.WGAN:
gradient_penalty = calc_gradient_penalty(netD, text, fake[:text.shape[0]])##for case fewer text images
gradient_penalty.backward()
optimizerD.step()
if i >0 and opt.WGAN and i%opt.dIter!=0:
continue ##critic steps to 1 GEN steps
for net in Gnets:
net.zero_grad()
noise=setNoise(noise)
fake = netG(noise)
output = netD(fake)
loss_adv = criterion(output, output.detach()*0+real_label)
D_G_z2 = output.mean()
errG = loss_adv
errG.backward()
optimizerU.step()
print('[%d/%d][%d/%d] D(x): %.4f D(G(z)): %.4f / %.4f time %.4f'
% (epoch, opt.niter, i, len(dataloader),D_x, D_G_z1, D_G_z2,time.time()-t0))
### RUN INFERENCE AND SAVE LARGE OUTPUT MOSAICS
if i % 100 == 0:
vutils.save_image(text, '%s/real_textures.jpg' % opt.outputFolder, normalize=True)
vutils.save_image(fake,'%s/generated_textures_%03d_%s.jpg' % (opt.outputFolder, epoch,desc),normalize=True)
fixnoise=setNoise(fixnoise)
vutils.save_image(fixnoise.view(-1,1,fixnoise.shape[2],fixnoise.shape[3]), '%s/noiseBig_epoch_%03d_%s.jpg' % (opt.outputFolder, epoch, desc),normalize=True)
netG.eval()
with torch.no_grad():
fakeBig=netG(fixnoise)
vutils.save_image(fakeBig,'%s/big_texture_%03d_%s.jpg' % (opt.outputFolder, epoch,desc),normalize=True)
netG.train()
##OPTIONAL
##save/load model for later use if desired
#outModelName = '%s/netG_epoch_%d_%s.pth' % (opt.outputFolder, epoch*0,desc)
#torch.save(netU.state_dict(),outModelName )
#netU.load_state_dict(torch.load(outModelName))