-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
161 lines (119 loc) · 6.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import dgl
import random
from data_loader import load_data
from model import *
from utils import *
EOS = 1e-10
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
dgl.seed(seed)
dgl.random.seed(seed)
def train_cl(cl_model, discriminator, optimizer_cl, features, str_encodings, edges):
cl_model.train()
discriminator.eval()
adj_1, adj_2, weights_lp, _ = discriminator(torch.cat((features, str_encodings), 1), edges)
features_1, adj_1, features_2, adj_2 = augmentation(features, adj_1, features, adj_2, args, cl_model.training)
cl_loss = cl_model(features_1, adj_1, features_2, adj_2)
optimizer_cl.zero_grad()
cl_loss.backward()
optimizer_cl.step()
return cl_loss.item()
def train_discriminator(cl_model, discriminator, optimizer_disc, features, str_encodings, edges, args):
cl_model.eval()
discriminator.train()
adj_1, adj_2, weights_lp, weights_hp = discriminator(torch.cat((features, str_encodings), 1), edges)
rand_np = generate_random_node_pairs(features.shape[0], edges.shape[1])
psu_label = torch.ones(edges.shape[1]).cuda()
embedding = cl_model.get_embedding(features, adj_1, adj_2)
edge_emb_sim = F.cosine_similarity(embedding[edges[0]], embedding[edges[1]])
rnp_emb_sim_lp = F.cosine_similarity(embedding[rand_np[0]], embedding[rand_np[1]])
loss_lp = F.margin_ranking_loss(edge_emb_sim, rnp_emb_sim_lp, psu_label, margin=args.margin_hom, reduction='none')
loss_lp *= torch.relu(weights_lp - 0.5)
rnp_emb_sim_hp = F.cosine_similarity(embedding[rand_np[0]], embedding[rand_np[1]])
loss_hp = F.margin_ranking_loss(rnp_emb_sim_hp, edge_emb_sim, psu_label, margin=args.margin_het, reduction='none')
loss_hp *= torch.relu(weights_hp - 0.5)
rank_loss = (loss_lp.mean() + loss_hp.mean()) / 2
optimizer_disc.zero_grad()
rank_loss.backward()
optimizer_disc.step()
return rank_loss.item()
def main(args):
setup_seed(0)
features, edges, str_encodings, train_mask, val_mask, test_mask, labels, nnodes, nfeats = load_data(args.dataset)
results = []
for trial in range(args.ntrials):
setup_seed(trial)
cl_model = GCL(nlayers=args.nlayers_enc, nlayers_proj=args.nlayers_proj, in_dim=nfeats, emb_dim=args.emb_dim,
proj_dim=args.proj_dim, dropout=args.dropout, sparse=args.sparse, batch_size=args.cl_batch_size).cuda()
cl_model.set_mask_knn(features.cpu(), k=args.k, dataset=args.dataset)
discriminator = Edge_Discriminator(nnodes, nfeats + str_encodings.shape[1], args.alpha, args.sparse).cuda()
optimizer_cl = torch.optim.Adam(cl_model.parameters(), lr=args.lr_gcl, weight_decay=args.w_decay)
optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=args.lr_disc, weight_decay=args.w_decay)
features = features.cuda()
str_encodings = str_encodings.cuda()
edges = edges.cuda()
best_acc_val = 0
best_acc_test = 0
for epoch in range(1, args.epochs + 1):
for _ in range(args.cl_rounds):
cl_loss = train_cl(cl_model, discriminator, optimizer_cl, features, str_encodings, edges)
rank_loss = train_discriminator(cl_model, discriminator, optimizer_discriminator, features, str_encodings, edges, args)
print("[TRAIN] Epoch:{:04d} | CL Loss {:.4f} | RANK loss:{:.4f} ".format(epoch, cl_loss, rank_loss))
if epoch % args.eval_freq == 0:
cl_model.eval()
discriminator.eval()
adj_1, adj_2, _, _ = discriminator(torch.cat((features, str_encodings), 1), edges)
embedding = cl_model.get_embedding(features, adj_1, adj_2)
cur_split = 0 if (train_mask.shape[1]==1) else (trial % train_mask.shape[1])
acc_test, acc_val = eval_test_mode(embedding, labels, train_mask[:, cur_split],
val_mask[:, cur_split], test_mask[:, cur_split])
print(
'[TEST] Epoch:{:04d} | CL loss:{:.4f} | RANK loss:{:.4f} | VAL ACC:{:.2f} | TEST ACC:{:.2f}'.format(
epoch, cl_loss, rank_loss, acc_val, acc_test))
if acc_val > best_acc_val:
best_acc_val = acc_val
best_acc_test = acc_test
results.append(best_acc_test)
print('\n[FINAL RESULT] Dataset:{} | Run:{} | ACC:{:.2f}+-{:.2f}'.format(args.dataset, args.ntrials, np.mean(results),
np.std(results)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# ESSENTIAL
parser.add_argument('-dataset', type=str, default='cornell',
choices=['cora', 'citeseer', 'pubmed', 'chameleon', 'squirrel', 'actor', 'cornell',
'texas', 'wisconsin', 'computers', 'photo', 'cs', 'physics', 'wikics'])
parser.add_argument('-ntrials', type=int, default=10)
parser.add_argument('-sparse', type=int, default=0)
parser.add_argument('-eval_freq', type=int, default=20)
parser.add_argument('-epochs', type=int, default=400)
parser.add_argument('-lr_gcl', type=float, default=0.001)
parser.add_argument('-lr_disc', type=float, default=0.001)
parser.add_argument('-cl_rounds', type=int, default=2)
parser.add_argument('-w_decay', type=float, default=0.0)
parser.add_argument('-dropout', type=float, default=0.5)
# DISC Module - Hyper-param
parser.add_argument('-alpha', type=float, default=0.1)
parser.add_argument('-margin_hom', type=float, default=0.5)
parser.add_argument('-margin_het', type=float, default=0.5)
# GRL Module - Hyper-param
parser.add_argument('-nlayers_enc', type=int, default=2)
parser.add_argument('-nlayers_proj', type=int, default=1, choices=[1, 2])
parser.add_argument('-emb_dim', type=int, default=128)
parser.add_argument('-proj_dim', type=int, default=128)
parser.add_argument('-cl_batch_size', type=int, default=0)
parser.add_argument('-k', type=int, default=20)
parser.add_argument('-maskfeat_rate_1', type=float, default=0.1)
parser.add_argument('-maskfeat_rate_2', type=float, default=0.5)
parser.add_argument('-dropedge_rate_1', type=float, default=0.5)
parser.add_argument('-dropedge_rate_2', type=float, default=0.1)
args = parser.parse_args()
print(args)
main(args)