-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
230 lines (186 loc) · 8.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
from model import HCL
from data_loader import *
import argparse
import numpy as np
import torch
import random
import faiss
import sklearn.metrics as skm
import torch_geometric
def arg_parse():
parser = argparse.ArgumentParser()
parser.add_argument('-exp_type', type=str, default='ad', choices=['oodd', 'ad'])
parser.add_argument('-DS', help='Dataset', default='BZR')
parser.add_argument('-DS_ood', help='Dataset', default='COX2')
parser.add_argument('-DS_pair', default=None)
parser.add_argument('-rw_dim', type=int, default=16)
parser.add_argument('-dg_dim', type=int, default=16)
parser.add_argument('-batch_size', type=int, default=128)
parser.add_argument('-batch_size_test', type=int, default=9999)
parser.add_argument('-lr', type=float, default=0.0001)
parser.add_argument('-num_layer', type=int, default=5)
parser.add_argument('-hidden_dim', type=int, default=16)
parser.add_argument('-num_trial', type=int, default=5)
parser.add_argument('-num_epoch', type=int, default=400)
parser.add_argument('-eval_freq', type=int, default=10)
parser.add_argument('-is_adaptive', type=int, default=1)
parser.add_argument('-num_cluster', type=int, default=2)
parser.add_argument('-alpha', type=float, default=0)
return parser.parse_args()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
torch_geometric.seed_everything(seed)
def run_kmeans(x, args):
results = {}
d = x.shape[1]
k = args.num_cluster
clus = faiss.Clustering(d, k)
clus.niter = 20
clus.nredo = 5
clus.seed = 0
clus.max_points_per_centroid = 1000
clus.min_points_per_centroid = 3
res = faiss.StandardGpuResources()
cfg = faiss.GpuIndexFlatConfig()
cfg.useFloat16 = False
try:
index = faiss.GpuIndexFlatL2(res, d, cfg)
clus.train(x, index)
except:
print('Fail to cluster with GPU. Try CPU...')
index = faiss.IndexFlatL2(d)
clus.train(x, index)
D, I = index.search(x, 1)
im2cluster = [int(n[0]) for n in I]
centroids = faiss.vector_to_array(clus.centroids).reshape(k, d)
Dcluster = [[] for c in range(k)]
for im, i in enumerate(im2cluster):
Dcluster[i].append(D[im][0])
density = np.zeros(k)
for i, dist in enumerate(Dcluster):
if len(dist) > 1:
d = (np.asarray(dist) ** 0.5).mean() / np.log(len(dist) + 10)
density[i] = d
dmax = density.max()
for i, dist in enumerate(Dcluster):
if len(dist) <= 1:
density[i] = dmax
density = density.clip(np.percentile(density, 30),
np.percentile(density, 70))
density = density / density.mean() + 0.5
centroids = torch.Tensor(centroids).cuda()
centroids = torch.nn.functional.normalize(centroids, p=2, dim=1)
im2cluster = torch.LongTensor(im2cluster).cuda()
density = torch.Tensor(density).cuda()
results['centroids'] = centroids
results['density'] = density
results['im2cluster'] = im2cluster
return results
def get_cluster_result(dataloader, model, args):
model.eval()
b_all = torch.zeros((n_train, model.embedding_dim))
for data in dataloader:
with torch.no_grad():
data = data.to(device)
b = model.get_b(data.x, data.x_s, data.edge_index, data.batch, data.num_graphs)
b_all[data.idx] = b.detach().cpu()
cluster_result = run_kmeans(b_all.numpy(), args)
return cluster_result
if __name__ == '__main__':
setup_seed(0)
args = arg_parse()
if args.exp_type == 'ad':
if args.DS.startswith('Tox21'):
dataloader, dataloader_test, meta = get_ad_dataset_Tox21(args)
else:
splits = get_ad_split_TU(args, fold=args.num_trial)
aucs = []
for trial in range(args.num_trial):
setup_seed(trial + 1)
if args.exp_type == 'oodd':
dataloader, dataloader_test, meta = get_ood_dataset(args)
elif args.exp_type == 'ad' and not args.DS.startswith('Tox21'):
dataloader, dataloader_test, meta = get_ad_dataset_TU(args, splits[trial])
dataset_num_features = meta['num_feat']
n_train = meta['num_train']
if trial == 0:
print('================')
print('Exp_type: {}'.format(args.exp_type))
print('DS: {}'.format(args.DS_pair if args.DS_pair is not None else args.DS))
print('num_features: {}'.format(dataset_num_features))
print('num_structural_encodings: {}'.format(args.dg_dim + args.rw_dim))
print('hidden_dim: {}'.format(args.hidden_dim))
print('num_gc_layers: {}'.format(args.num_layer))
print('================')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = HCL(args.hidden_dim, args.num_layer, dataset_num_features, args.dg_dim+args.rw_dim).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
for epoch in range(1, args.num_epoch + 1):
if args.is_adaptive:
if epoch == 1:
weight_b, weight_g, weight_n = 1, 1, 1
else:
weight_b, weight_g, weight_n = std_b ** args.alpha, std_g ** args.alpha, std_n ** args.alpha
weight_sum = (weight_b + weight_g + weight_n) / 3
weight_b, weight_g, weight_n = weight_b/weight_sum, weight_g/weight_sum, weight_n/weight_sum
cluster_result = get_cluster_result(dataloader, model, args)
model.train()
loss_all = 0
if args.is_adaptive:
loss_b_all, loss_g_all, loss_n_all = [], [], []
for data in dataloader:
data = data.to(device)
optimizer.zero_grad()
b, g_f, g_s, n_f, n_s = model(data.x, data.x_s, data.edge_index, data.batch, data.num_graphs)
loss_g = model.calc_loss_g(g_f, g_s)
loss_b = model.calc_loss_b(b, data.idx, cluster_result)
loss_n = model.calc_loss_n(n_f, n_s, data.batch)
if args.is_adaptive:
loss = weight_b * loss_b.mean() + weight_g * loss_g.mean() + weight_n * loss_n.mean()
loss_b_all = loss_b_all + loss_b.detach().cpu().tolist()
loss_g_all = loss_g_all + loss_g.detach().cpu().tolist()
loss_n_all = loss_n_all + loss_n.detach().cpu().tolist()
else:
loss = loss_b.mean() + loss_g.mean() + loss_n.mean()
loss_all += loss.item() * data.num_graphs
loss.backward()
optimizer.step()
print('[TRAIN] Epoch:{:03d} | Loss:{:.4f}'.format(epoch, loss_all / n_train))
if args.is_adaptive:
mean_b, std_b = np.mean(loss_b_all), np.std(loss_b_all)
mean_g, std_g = np.mean(loss_g_all), np.std(loss_g_all)
mean_n, std_n = np.mean(loss_n_all), np.std(loss_n_all)
if epoch % args.eval_freq == 0:
cluster_result_eval = get_cluster_result(dataloader, model, args)
model.eval()
y_score_all = []
y_true_all = []
for data in dataloader_test:
data = data.to(device)
b, g_f, g_s, n_f, n_s = model(data.x, data.x_s, data.edge_index, data.batch, data.num_graphs)
y_score_b = model.scoring_b(b, cluster_result_eval)
y_score_g = model.calc_loss_g(g_f, g_s)
y_score_n = model.calc_loss_n(n_f, n_s, data.batch)
if args.is_adaptive:
y_score = (y_score_b - mean_b)/std_b + (y_score_g - mean_g)/std_g + (y_score_n - mean_n)/std_n
else:
y_score = y_score_b + y_score_g + y_score_n
y_true = data.y
y_score_all = y_score_all + y_score.detach().cpu().tolist()
y_true_all = y_true_all + y_true.detach().cpu().tolist()
auc = skm.roc_auc_score(y_true_all, y_score_all)
print('[EVAL] Epoch: {:03d} | AUC:{:.4f}'.format(epoch, auc))
print('[RESULT] Trial: {:02d} | AUC:{:.4f}'.format(trial, auc))
aucs.append(auc)
avg_auc = np.mean(aucs)
std_auc = np.std(aucs)
print('[FINAL RESULT] AVG_AUC:{:.4f}+-{:.4f}'.format(avg_auc, std_auc))