Skip to content

Commit 7fc516b

Browse files
author
=
committed
update readme
1 parent 1a155fb commit 7fc516b

File tree

3 files changed

+9
-11
lines changed

3 files changed

+9
-11
lines changed

configs/ESAM_CA/ESAM_online_scenenn_CA_test.py

+6-10
Original file line numberDiff line numberDiff line change
@@ -24,14 +24,13 @@
2424
conv1_kernel_size=5,
2525
bn_momentum=0.02)),
2626
memory=dict(type='MultilevelMemory', in_channels=[32, 64, 128, 256], queue=-1, vmp_layer=(0,1,2,3)),
27-
# memory=dict(type='MultilevelMemory', in_channels=[32, 64, 128, 256], queue=-1, vmp_layer=(2,3)),
2827
pool=dict(type='GeoAwarePooling', channel_proj=96),
2928
decoder=dict(
3029
type='ScanNetMixQueryDecoder',
3130
num_layers=3,
3231
share_attn_mlp=False,
3332
share_mask_mlp=False,
34-
temporal_attn=False, # TODO: to be extended
33+
temporal_attn=False,
3534
# the last mp_mode should be "P"
3635
cross_attn_mode=["", "SP", "SP", "SP"],
3736
mask_pred_mode=["SP", "SP", "P", "P"],
@@ -51,7 +50,7 @@
5150
fix_attention=True,
5251
objectness_flag=False,
5352
bbox_flag=use_bbox),
54-
merge_head=dict(type='MergeHead', in_channels=256, out_channels=256),
53+
merge_head=dict(type='MergeHead', in_channels=256, out_channels=256, norm='layer'),
5554
merge_criterion=dict(type='ScanNetMergeCriterion_Fast', tmp=True, p2s=False),
5655
criterion=dict(
5756
type='ScanNetMixedCriterion',
@@ -76,7 +75,7 @@
7675
fix_dice_loss_weight=True,
7776
iter_matcher=True,
7877
fix_mean_loss=True)),
79-
train_cfg=dict(),
78+
train_cfg=None,
8079
test_cfg=dict(
8180
# TODO: a larger topK may be better
8281
topk_insts=20,
@@ -91,7 +90,6 @@
9190
stuff_classes=[0, 1],
9291
merge_type='learnable_online'))
9392

94-
# TODO: complete the dataset
9593
dataset_type = 'ScanNet200SegMVDataset_'
9694
data_root = 'data/scenenn-mv/'
9795

@@ -163,8 +161,7 @@
163161
with_seg_3d=True,
164162
with_sp_mask_3d=True,
165163
with_rec=True,
166-
dataset_type = 'scenenn'),
167-
# dict(type='SwapChairAndFloorWithRec'),
164+
dataset_type='scenenn'),
168165
dict(type='PointSegClassMappingWithRec'),
169166
dict(
170167
type='MultiScaleFlipAug3D',
@@ -186,6 +183,8 @@
186183
dict(type='Pack3DDetInputs_Online', keys=['points', 'sp_pts_mask'])
187184
]
188185

186+
train_dataloader = None
187+
189188
val_dataloader = dict(
190189
# persistent_workers=False,
191190
# num_workers=0,
@@ -233,7 +232,6 @@
233232
metric_meta=metric_meta)
234233
test_evaluator = val_evaluator
235234

236-
237235
custom_hooks = [dict(type='EmptyCacheHook', after_iter=True)]
238236
default_hooks = dict(
239237
checkpoint=dict(
@@ -242,7 +240,5 @@
242240
save_best=['all_ap_50%'],
243241
rule='greater'))
244242

245-
246-
# training schedule for 1x
247243
val_cfg = dict(type='ValLoop')
248244
test_cfg = dict(type='TestLoop')

docs/demo.md

+2
Original file line numberDiff line numberDiff line change
@@ -6,4 +6,6 @@ You can run the visualization demo by running the following command:
66
CUDA_VISIBLE_DEVICES=0 python vis_demo/online_demo.py --scene_idx <scene_idx> --config <config_file> --checkpoint <checkpoint_file>
77
```
88

9+
For `ScanNet` or `ScanNet200`, the `<scene_idx>` should be in the format of `scenexxxx_xx`, like `scene0000_00`. For `SceneNN` or `3RScan`, the `<scene_idx>` should be in the format of `xxx`, like `000`.
10+
911
It will process the specified scene and visualize the results. The visualization includes the input RGB sequence and the segmentation results in the form of a 3D point cloud colored by the predicted instance labels.

vis_demo/online_demo.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ def inference_detector(model, scene_idx):
8686

8787
def main():
8888
parser = ArgumentParser()
89-
parser.add_argument('--scene-idx', default='scene0011_00', type=str, help='single scene index')
89+
parser.add_argument('--scene_idx', default='scene0011_00', type=str, help='single scene index')
9090
parser.add_argument('--config', type=str, help='Config file')
9191
parser.add_argument('--checkpoint', type=str, help='Checkpoint file')
9292
parser.add_argument('--device', default='cuda:0', help='Device used for inference')

0 commit comments

Comments
 (0)