-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmodeling_xclip.py
406 lines (322 loc) · 21.8 KB
/
modeling_xclip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import torch
from torch import nn
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
from modules.until_module import PreTrainedModel, AllGather, CrossEn
from modules.module_cross import CrossModel, CrossConfig, Transformer as TransformerClip
from modules.module_clip import CLIP, convert_weights
from modules.modeling import CLIP4ClipPreTrainedModel, show_log, update_attr, check_attr
logger = logging.getLogger(__name__)
allgather = AllGather.apply
class XCLIP(CLIP4ClipPreTrainedModel):
def __init__(self, cross_config, clip_state_dict, task_config):
super(XCLIP, self).__init__(cross_config)
self.task_config = task_config
self.ignore_video_index = -1
assert self.task_config.max_words + self.task_config.max_frames <= cross_config.max_position_embeddings
self._stage_one = True
self._stage_two = False
show_log(task_config, "Stage-One:{}, Stage-Two:{}".format(self._stage_one, self._stage_two))
self.loose_type = False
if self._stage_one and check_attr('loose_type', self.task_config):
self.loose_type = True
show_log(task_config, "Test retrieval by loose type.")
# CLIP Encoders: From OpenAI: CLIP [https://github.com/openai/CLIP] ===>
vit = "visual.proj" in clip_state_dict
assert vit
if vit:
vision_width = clip_state_dict["visual.conv1.weight"].shape[0]
vision_layers = len(
[k for k in clip_state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = clip_state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((clip_state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [len(set(k.split(".")[2] for k in clip_state_dict if k.startswith(f"visual.layer{b}"))) for b in
[1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = clip_state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((clip_state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == clip_state_dict["visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
embed_dim = clip_state_dict["text_projection"].shape[1]
context_length = clip_state_dict["positional_embedding"].shape[0]
vocab_size = clip_state_dict["token_embedding.weight"].shape[0]
transformer_width = clip_state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in clip_state_dict if k.startswith(f"transformer.resblocks")))
show_log(task_config, "\t embed_dim: {}".format(embed_dim))
show_log(task_config, "\t image_resolution: {}".format(image_resolution))
show_log(task_config, "\t vision_layers: {}".format(vision_layers))
show_log(task_config, "\t vision_width: {}".format(vision_width))
show_log(task_config, "\t vision_patch_size: {}".format(vision_patch_size))
show_log(task_config, "\t context_length: {}".format(context_length))
show_log(task_config, "\t vocab_size: {}".format(vocab_size))
show_log(task_config, "\t transformer_width: {}".format(transformer_width))
show_log(task_config, "\t transformer_heads: {}".format(transformer_heads))
show_log(task_config, "\t transformer_layers: {}".format(transformer_layers))
self.linear_patch = '2d'
if hasattr(task_config, "linear_patch"):
self.linear_patch = task_config.linear_patch
show_log(task_config, "\t\t linear_patch: {}".format(self.linear_patch))
# use .float() to avoid overflow/underflow from fp16 weight. https://github.com/openai/CLIP/issues/40
cut_top_layer = 0
show_log(task_config, "\t cut_top_layer: {}".format(cut_top_layer))
self.clip = CLIP(
embed_dim,
image_resolution, vision_layers-cut_top_layer, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers-cut_top_layer,
linear_patch=self.linear_patch
).float()
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in clip_state_dict:
del clip_state_dict[key]
convert_weights(self.clip)
# <=== End of CLIP Encoders
self.sim_header = 'meanP'
if hasattr(task_config, "sim_header"):
self.sim_header = task_config.sim_header
show_log(task_config, "\t sim_header: {}".format(self.sim_header))
if self.sim_header == "tightTransf": assert self.loose_type is False
cross_config.max_position_embeddings = context_length
if self.loose_type is False:
# Cross Encoder ===>
cross_config = update_attr("cross_config", cross_config, "num_hidden_layers", self.task_config, "cross_num_hidden_layers")
self.cross = CrossModel(cross_config)
# <=== End of Cross Encoder
self.similarity_dense = nn.Linear(cross_config.hidden_size, 1)
if self.sim_header == "seqLSTM" or self.sim_header == "seqTransf":
self.frame_position_embeddings = nn.Embedding(cross_config.max_position_embeddings, cross_config.hidden_size)
if self.sim_header == "seqTransf":
self.transformerClip = TransformerClip(width=transformer_width, layers=self.task_config.cross_num_hidden_layers,
heads=transformer_heads, )
if self.sim_header == "seqLSTM":
self.lstm_visual = nn.LSTM(input_size=cross_config.hidden_size, hidden_size=cross_config.hidden_size,
batch_first=True, bidirectional=False, num_layers=1)
num_words = task_config.max_words
num_frames = self.task_config.max_frames
# recommend set True
self.use_original_clip_for_frame_features = True
# for coarse-grained constrast weights
self.global_mat_weight = nn.parameter.Parameter(torch.eye(embed_dim), requires_grad=True)
# for cross-grained constrast weights
self.word_logit_weight = nn.parameter.Parameter(torch.eye(num_words), requires_grad=True)
self.frame_logit_weight = nn.parameter.Parameter(torch.eye(num_frames), requires_grad=True)
# for fine-grained constrast weights
self.local_mat_weight = nn.parameter.Parameter(torch.eye(embed_dim), requires_grad=True)
self.frame_mat_weight = nn.parameter.Parameter(torch.eye(num_frames), requires_grad=True)
self.word_mat_weight = nn.parameter.Parameter(torch.eye(num_words), requires_grad=True)
self.frame_mat_weight2 = nn.parameter.Parameter(torch.eye(num_frames), requires_grad=True)
self.word_mat_weight2 = nn.parameter.Parameter(torch.eye(num_words), requires_grad=True)
self.loss_fct = CrossEn()
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids, attention_mask, video, video_mask=None):
input_ids = input_ids.view(-1, input_ids.shape[-1])
token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1])
attention_mask = attention_mask.view(-1, attention_mask.shape[-1])
video_mask = video_mask.view(-1, video_mask.shape[-1])
# T x 3 x H x W
video = torch.as_tensor(video).float()
b, pair, bs, ts, channel, h, w = video.shape
video = video.view(b * pair * bs * ts, channel, h, w)
video_frame = bs * ts
# [bs, 1, dim], [bs, num_words, dim], [bs, num_frames, dim]
(sequence_output, seq_features), visual_output = self.get_sequence_visual_output(input_ids, token_type_ids, attention_mask,
video, video_mask, shaped=True, video_frame=video_frame)
if self.training:
loss = 0.
sim_matrix, *_tmp = self.get_similarity_logits(sequence_output, seq_features, visual_output, attention_mask,
video_mask, shaped=True, loose_type=self.loose_type)
sim_loss1 = self.loss_fct(sim_matrix)
sim_loss2 = self.loss_fct(sim_matrix.T)
sim_loss = (sim_loss1 + sim_loss2) / 2
loss += sim_loss
return loss
else:
return None
def get_sequence_output(self, input_ids, token_type_ids, attention_mask, shaped=False):
if shaped is False:
input_ids = input_ids.view(-1, input_ids.shape[-1])
token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1])
attention_mask = attention_mask.view(-1, attention_mask.shape[-1])
bs_pair = input_ids.size(0)
sequence_hidden, seq_features = self.clip.encode_text(input_ids, return_hidden=True)
sequence_hidden, seq_features = sequence_hidden.float(), seq_features.float()
sequence_hidden = sequence_hidden.view(bs_pair, -1, sequence_hidden.size(-1))
return sequence_hidden, seq_features
def get_visual_output(self, video, video_mask, shaped=False, video_frame=-1):
if shaped is False:
video_mask = video_mask.view(-1, video_mask.shape[-1])
video = torch.as_tensor(video).float()
b, pair, bs, ts, channel, h, w = video.shape
video = video.view(b * pair * bs * ts, channel, h, w)
video_frame = bs * ts
bs_pair = video_mask.size(0)
visual_hidden = self.clip.encode_image(video, video_frame=video_frame).float()
visual_hidden = visual_hidden.view(bs_pair, -1, visual_hidden.size(-1))
return visual_hidden
def get_sequence_visual_output(self, input_ids, token_type_ids, attention_mask, video, video_mask, shaped=False, video_frame=-1):
if shaped is False:
input_ids = input_ids.view(-1, input_ids.shape[-1])
token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1])
attention_mask = attention_mask.view(-1, attention_mask.shape[-1])
video_mask = video_mask.view(-1, video_mask.shape[-1])
video = torch.as_tensor(video).float()
b, pair, bs, ts, channel, h, w = video.shape
video = video.view(b * pair * bs * ts, channel, h, w)
video_frame = bs * ts
sequence_output, seq_features = self.get_sequence_output(input_ids, token_type_ids, attention_mask, shaped=True) # [bs, 1, dim], [bs, num_words, dim]
visual_output = self.get_visual_output(video, video_mask, shaped=True, video_frame=video_frame) # [bs, num_frames, dim]
return (sequence_output, seq_features), visual_output
def _get_cross_output(self, sequence_output, visual_output, attention_mask, video_mask):
concat_features = torch.cat((sequence_output, visual_output), dim=1) # concatnate tokens and frames
concat_mask = torch.cat((attention_mask, video_mask), dim=1)
text_type_ = torch.zeros_like(attention_mask)
video_type_ = torch.ones_like(video_mask)
concat_type = torch.cat((text_type_, video_type_), dim=1)
cross_layers, pooled_output = self.cross(concat_features, concat_type, concat_mask, output_all_encoded_layers=True)
cross_output = cross_layers[-1]
return cross_output, pooled_output, concat_mask
def _mean_pooling_for_similarity_sequence(self, sequence_output, attention_mask):
attention_mask_un = attention_mask.to(dtype=torch.float).unsqueeze(-1)
attention_mask_un[:, 0, :] = 0.
sequence_output = sequence_output * attention_mask_un
text_out = torch.sum(sequence_output, dim=1) / torch.sum(attention_mask_un, dim=1, dtype=torch.float)
return text_out
def _mean_pooling_for_similarity_visual(self, visual_output, video_mask,):
video_mask_un = video_mask.to(dtype=torch.float).unsqueeze(-1)
visual_output = visual_output * video_mask_un
video_mask_un_sum = torch.sum(video_mask_un, dim=1, dtype=torch.float)
video_mask_un_sum[video_mask_un_sum == 0.] = 1.
video_out = torch.sum(visual_output, dim=1) / video_mask_un_sum
return video_out
def _mean_pooling_for_similarity(self, sequence_output, visual_output, attention_mask, video_mask,):
text_out = self._mean_pooling_for_similarity_sequence(sequence_output, attention_mask)
video_out = self._mean_pooling_for_similarity_visual(visual_output, video_mask)
return text_out, video_out
def _loose_similarity(self, sequence_output, seq_features, visual_output, attention_mask, video_mask, sim_header="meanP"):
"""
sequence_output: CLS token of text # [bs, 1, dim]
seq_features: all tokens of text # [bs, num_words, dim]
visual_output: all frames of video # [bs, num_frames, dim]
"""
sequence_output, visual_output = sequence_output.contiguous(), visual_output.contiguous()
if sim_header == "meanP":
# Default: Parameter-free type
visual_output_original = visual_output
pass
elif sim_header == "seqLSTM":
# Sequential type: LSTM
visual_output_original = visual_output
visual_output = pack_padded_sequence(visual_output, torch.sum(video_mask, dim=-1).cpu(),
batch_first=True, enforce_sorted=False)
visual_output, _ = self.lstm_visual(visual_output)
if self.training: self.lstm_visual.flatten_parameters()
visual_output, _ = pad_packed_sequence(visual_output, batch_first=True)
visual_output = torch.cat((visual_output, visual_output_original[:, visual_output.size(1):, ...].contiguous()), dim=1)
visual_output = visual_output + visual_output_original
elif sim_header == "seqTransf":
# Sequential type: Transformer Encoder
visual_output_original = visual_output
seq_length = visual_output.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=visual_output.device)
position_ids = position_ids.unsqueeze(0).expand(visual_output.size(0), -1)
frame_position_embeddings = self.frame_position_embeddings(position_ids)
visual_output = visual_output + frame_position_embeddings
extended_video_mask = (1.0 - video_mask.unsqueeze(1)) * -1000000.0
extended_video_mask = extended_video_mask.expand(-1, video_mask.size(1), -1)
visual_output = visual_output.permute(1, 0, 2) # NLD -> LND
visual_output = self.transformerClip(visual_output, extended_video_mask)
visual_output = visual_output.permute(1, 0, 2) # LND -> NLD
visual_output = visual_output + visual_output_original
# video-level visual feature
video_output = visual_output / visual_output.norm(dim=-1, keepdim=True)
video_output = self._mean_pooling_for_similarity_visual(video_output, video_mask)
video_output = video_output / video_output.norm(dim=-1, keepdim=True) # [bs, dim]
# frame-level visual features
if self.use_original_clip_for_frame_features:
frame_features = visual_output_original / visual_output_original.norm(dim=-1, keepdim=True) # [bs, num_frames, dim]
else:
frame_features = visual_output / visual_output.norm(dim=-1, keepdim=True) # [bs, num_frames, dim]
# sentence-level textual feature
sentence_output = sequence_output.squeeze(1)
sentence_output = sentence_output / sentence_output.norm(dim=-1, keepdim=True) # [bs, dim]
# word-level textual features
word_features = seq_features / seq_features.norm(dim=-1, keepdim=True) # [bs, num_words, dim]
logit_scale = self.clip.logit_scale.exp()
if self.training:
video_output = allgather(video_output, self.task_config)
frame_features = allgather(frame_features, self.task_config)
sentence_output = allgather(sentence_output, self.task_config)
word_features = allgather(word_features, self.task_config)
torch.distributed.barrier()
# video-sentence score
video_sentence_logits = logit_scale * torch.matmul(torch.matmul(sentence_output, self.global_mat_weight), video_output.t())
# video-word score
video_word_logits = logit_scale * torch.sum(torch.matmul(word_features, video_output.t()) \
* torch.matmul(torch.softmax(torch.matmul(word_features, video_output.t()) / 1e-2, dim=1).permute(0,2,1), self.word_logit_weight).permute(0,2,1), dim=1)
# sentence-frame score
sentence_frame_logits = logit_scale * torch.sum(torch.matmul(sentence_output, frame_features.permute(0, 2, 1)) \
* torch.matmul(torch.softmax(torch.matmul(sentence_output, frame_features.permute(0, 2, 1)) / 1e-2, dim=-1), self.frame_logit_weight), dim=-1).t()
# frame-word score
frame_word_logits = logit_scale * self._attenion_over_fine_grained_sim_matrix(word_features, frame_features)
logits = (video_sentence_logits + video_word_logits + sentence_frame_logits + frame_word_logits) / 4
return logits
def _attenion_over_fine_grained_sim_matrix(self, word_features, frame_features):
bs_video, num_frames, dim_video = frame_features.shape
bs_text, num_words, dim_text = word_features.shape
fine_grained_sim_scores = torch.matmul(torch.matmul(word_features.view(-1, dim_text), self.local_mat_weight), frame_features.view(-1, dim_video).t()).view(bs_text, num_words, bs_video, num_frames) # [bs_text, num_words, bs_video, num_frames]
word_level_logit = torch.sum(torch.matmul(torch.softmax(fine_grained_sim_scores/1e-2, dim=1).permute(0,2,3,1), self.word_mat_weight).permute(0,3,1,2) * fine_grained_sim_scores, dim=1) # [bs_text, bs_video, num_frames]
frame_level_logit = torch.sum(torch.matmul(torch.softmax(fine_grained_sim_scores/1e-2, dim=-1), self.frame_mat_weight) * fine_grained_sim_scores, dim=-1) # [bs_text, num_words, bs_video]
sent2frame_logits = torch.sum(torch.matmul(torch.softmax(word_level_logit/1e-2, dim=-1),self.frame_mat_weight2) * word_level_logit, dim=-1) # [bs_text, bs_video]
video2word_logits = torch.sum(torch.matmul(torch.softmax(frame_level_logit/1e-2, dim=1).permute(0,2,1), self.word_mat_weight2).permute(0,2,1) * frame_level_logit, dim=1) # [bs_text, bs_video]
return (sent2frame_logits + video2word_logits) / 2
def _cross_similarity(self, sequence_output, visual_output, attention_mask, video_mask):
sequence_output, visual_output = sequence_output.contiguous(), visual_output.contiguous()
b_text, s_text, h_text = sequence_output.size()
b_visual, s_visual, h_visual = visual_output.size()
retrieve_logits_list = []
step_size = b_text # set smaller to reduce memory cost
split_size = [step_size] * (b_text // step_size)
release_size = b_text - sum(split_size)
if release_size > 0:
split_size += [release_size]
# due to clip text branch retrun the last hidden
attention_mask = torch.ones(sequence_output.size(0), 1)\
.to(device=attention_mask.device, dtype=attention_mask.dtype)
sequence_output_splits = torch.split(sequence_output, split_size, dim=0)
attention_mask_splits = torch.split(attention_mask, split_size, dim=0)
for i in range(len(split_size)):
sequence_output_row = sequence_output_splits[i]
attention_mask_row = attention_mask_splits[i]
sequence_output_l = sequence_output_row.unsqueeze(1).repeat(1, b_visual, 1, 1)
sequence_output_l = sequence_output_l.view(-1, s_text, h_text)
attention_mask_l = attention_mask_row.unsqueeze(1).repeat(1, b_visual, 1)
attention_mask_l = attention_mask_l.view(-1, s_text)
step_truth = sequence_output_row.size(0)
visual_output_r = visual_output.unsqueeze(0).repeat(step_truth, 1, 1, 1)
visual_output_r = visual_output_r.view(-1, s_visual, h_visual)
video_mask_r = video_mask.unsqueeze(0).repeat(step_truth, 1, 1)
video_mask_r = video_mask_r.view(-1, s_visual)
cross_output, pooled_output, concat_mask = \
self._get_cross_output(sequence_output_l, visual_output_r, attention_mask_l, video_mask_r)
retrieve_logits_row = self.similarity_dense(pooled_output).squeeze(-1).view(step_truth, b_visual)
retrieve_logits_list.append(retrieve_logits_row)
retrieve_logits = torch.cat(retrieve_logits_list, dim=0)
return retrieve_logits
def get_similarity_logits(self, sequence_output, seq_features, visual_output, attention_mask, video_mask, shaped=False, loose_type=False):
if shaped is False:
attention_mask = attention_mask.view(-1, attention_mask.shape[-1])
video_mask = video_mask.view(-1, video_mask.shape[-1])
contrastive_direction = ()
if loose_type:
assert self.sim_header in ["meanP", "seqLSTM", "seqTransf"]
retrieve_logits = self._loose_similarity(sequence_output, seq_features, visual_output, attention_mask, video_mask, sim_header=self.sim_header)
else:
assert self.sim_header in ["tightTransf"]
retrieve_logits = self._cross_similarity(sequence_output, visual_output, attention_mask, video_mask, )
return retrieve_logits, contrastive_direction