-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathload_data.py
46 lines (41 loc) · 1.22 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from utils import *
from scipy import sparse
import numpy as np
import networkx as nx
from sklearn.model_selection import KFold
def load_nci(cv_index):
dataset = load_protein_dataset('proteins')
ad_train_list = []
ad_test_list = []
fea_train_list = []
fea_test_list = []
label_train_list = []
label_test_list = []
kf = KFold(n_splits=10)
kf.get_n_splits(dataset[0])
j = 0
for train_index, test_index in kf.split(dataset[0]):
if j == cv_index:
i = 0
for item in dataset[0]:
if i in test_index:
fea_test_list.append(sparse.csr_matrix(item))
else:
fea_train_list.append(sparse.csr_matrix(item))
i += 1
i = 0
for item in dataset[1]:
if i in test_index:
ad_test_list.append(nx.adjacency_matrix(nx.from_numpy_matrix(item[:,:])))
else:
ad_train_list.append(nx.adjacency_matrix(nx.from_numpy_matrix(item[:,:])))
i += 1
i = 0
for item in dataset[2]:
if i in test_index:
label_test_list.append(item)
else:
label_train_list.append(item)
i += 1
j += 1
return ad_train_list,fea_train_list,ad_test_list,fea_test_list,label_train_list,label_test_list