-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
376 lines (235 loc) · 14.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset
from torch.autograd import Variable
import torchvision.transforms.functional as VF
from torchvision import transforms
import sys, argparse, os, copy, itertools, glob, datetime
import pandas as pd
import numpy as np
#from tqdm import tqdm
from sklearn.utils import shuffle
from sklearn.metrics import roc_curve, roc_auc_score,precision_recall_fscore_support,f1_score,accuracy_score,precision_score,recall_score,balanced_accuracy_score
from sklearn.datasets import load_svmlight_file
from collections import OrderedDict
# from models.dropout import LinearScheduler
from aeon.datasets import load_classification
from utils import *
from torch.cuda.amp import GradScaler, autocast
import torch.nn.functional as F
from mydataload import loadorean
import random
# from sample_method import rd_torch,dpp
import random
from timm.optim.adamp import AdamP
from lookhead import Lookahead
import warnings
from models.timemil import TimeMIL
# Suppress all warnings
warnings.filterwarnings("ignore")
def train(trainloader, milnet, criterion, optimizer, epoch,args):
milnet.train()
total_loss = 0
for batch_id, (feats, label) in enumerate(trainloader):
# bag_feats = feats.cuda()
# bag_label = label.cuda()
bag_feats = feats.cuda()
bag_label = label.cuda()
# print(bag_feats.shape)
# window-based random masking
if args.dropout_patch>0:
selecy_window_indx = random.sample(range(10),int(args.dropout_patch*10))
inteval = int(len(bag_feats)//10)
for idx in selecy_window_indx:
bag_feats[:,idx*inteval:idx*inteval+inteval,:] = torch.randn(1).cuda()
optimizer.zero_grad()
if epoch<args.epoch_des:
bag_prediction = milnet(bag_feats,warmup = True)
else:
bag_prediction = milnet(bag_feats,warmup = False)
bag_loss = criterion(bag_prediction, bag_label)
if True:
loss = bag_loss
sys.stdout.write('\r Training bag [%d/%d] bag loss: %.4f total loss: %.4f' % \
(batch_id, len(trainloader), bag_loss.item(),loss.item()))
loss.backward()
# avoid the overfitting by using gradient clip
torch.nn.utils.clip_grad_norm_(milnet.parameters(), 2.0)
optimizer.step()
# total_loss = total_loss + loss.item()
total_loss = total_loss + bag_loss
return total_loss / len(trainloader)
def test(testloader, milnet, criterion, args):
milnet.eval()
# csvs = shuffle(test_df).reset_index(drop=True)
total_loss = 0
test_labels = []
test_predictions = []
with torch.no_grad():
for batch_id, (feats, label) in enumerate(testloader):
bag_feats = feats.cuda()
bag_label = label.cuda()
bag_prediction = milnet(bag_feats) #b*class
bag_loss = criterion(bag_prediction,bag_label)
loss = bag_loss
total_loss = total_loss + loss.item()
sys.stdout.write('\r Testing bag [%d/%d] bag loss: %.4f' % (batch_id, len(testloader), loss.item()))
# test_labels.extend([label.squeeze().cpu().numpy()])
test_labels.extend([label.cpu().numpy()])
test_predictions.extend([torch.sigmoid(bag_prediction).cpu().numpy()])
test_labels = np.vstack(test_labels)
test_predictions = np.vstack(test_predictions)
test_predictions_prob = np.exp(test_predictions)/np.sum(np.exp(test_predictions),axis=1,keepdims=True)
test_predictions = np.argmax(test_predictions,axis=1)
test_labels = np.argmax(test_labels,axis=1)
avg_score = accuracy_score(test_labels,test_predictions)
balanced_avg_score = balanced_accuracy_score(test_labels,test_predictions)
f1_marco = f1_score(test_labels,test_predictions,average='macro')
f1_micro = f1_score(test_labels,test_predictions,average='micro')
p_marco = precision_score(test_labels,test_predictions,average='macro')
p_micro = precision_score(test_labels,test_predictions,average='micro')
r_marco = recall_score(test_labels,test_predictions,average='macro')
r_micro = recall_score(test_labels,test_predictions,average='micro')
r_marco = recall_score(test_labels,test_predictions,average='macro')
r_micro = recall_score(test_labels,test_predictions,average='micro')
if args.num_classes ==2:
# print(test_labels.shape)
roc_auc_ovo_marco= roc_auc_score(test_labels,test_predictions_prob[:,1],average='macro')
roc_auc_ovo_micro= 0.# roc_auc_score(test_labels,test_predictions_prob,average='micro',multi_class='ovo')
roc_auc_ovr_marco= roc_auc_score(test_labels,test_predictions_prob[:,1],average='macro')
roc_auc_ovr_micro= 0.# roc_auc_score(test_labels,test_predictions_prob,average='micro',multi_class='ovr')
else:
roc_auc_ovo_marco= roc_auc_score(test_labels,test_predictions_prob,average='macro',multi_class='ovo')
roc_auc_ovo_micro= 0.# roc_auc_score(test_labels,test_predictions_prob,average='micro',multi_class='ovo')
roc_auc_ovr_marco= roc_auc_score(test_labels,test_predictions_prob,average='macro',multi_class='ovr')
roc_auc_ovr_micro= 0.#
results = [avg_score,balanced_avg_score,f1_marco,f1_micro, p_marco,p_micro,r_marco,r_micro,roc_auc_ovo_marco,roc_auc_ovo_micro,roc_auc_ovr_marco,roc_auc_ovr_micro]
return total_loss / len(testloader), results
def main():
parser = argparse.ArgumentParser(description='time classification by TimeMIL')
parser.add_argument('--dataset', default="PenDigits", type=str, help='dataset ')
parser.add_argument('--num_classes', default=2, type=int, help='Number of output classes [2]')
parser.add_argument('--num_workers', default=4, type=int, help='number of workers used in dataloader [4]')
parser.add_argument('--feats_size', default=512, type=int, help='Dimension of the feature size [512] resnet-50 1024')
parser.add_argument('--lr', default=5e-3, type=float, help='1e-3 Initial learning rate [0.0002]')
parser.add_argument('--num_epochs', default=300, type=int, help='Number of total training epochs [40|200]')
parser.add_argument('--gpu_index', type=int, nargs='+', default=(0,), help='GPU ID(s) [0]')
parser.add_argument('--weight_decay', default=1e-4, type=float, help='Weight decay 1e-4]')
parser.add_argument('--dropout_patch', default=0.5, type=float, help='Patch dropout rate [0] 0.5')
parser.add_argument('--dropout_node', default=0.2, type=float, help='Bag classifier dropout rate [0]')
parser.add_argument('--seed', default='0', type=int, help='random seed')
parser.add_argument('--optimizer', default='adamw', type=str, help='adamw sgd')
parser.add_argument('--save_dir', default='./savemodel/', type=str, help='the directory used to save all the output')
parser.add_argument('--epoch_des', default=10, type=int, help='turn on warmup')
parser.add_argument('--embed', default=128, type=int, help='Number of embedding')
parser.add_argument('--batchsize', default=64, type=int, help='batchsize')
args = parser.parse_args()
gpu_ids = tuple(args.gpu_index)
os.environ['CUDA_VISIBLE_DEVICES']=','.join(str(x) for x in gpu_ids)
args.save_dir = args.save_dir+'InceptBackbone'
maybe_mkdir_p(join(args.save_dir, f'{args.dataset}'))
args.save_dir = make_dirs(join(args.save_dir, f'{args.dataset}'))
maybe_mkdir_p(args.save_dir)
# <------------- set up logging ------------->
logging_path = os.path.join(args.save_dir, 'Train_log.log')
logger = get_logger(logging_path)
# <------------- save hyperparams ------------->
option = vars(args)
file_name = os.path.join(args.save_dir, 'option.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write('------------ Options -------------\n')
for k, v in sorted(option.items()):
opt_file.write('%s: %s\n' % (str(k), str(v)))
opt_file.write('-------------- End ----------------\n')
# criterion = nn.MSELoss()
# criterion = nn.CrossEntropyLoss(label_smoothing=0.0)#0.01
criterion = nn.BCEWithLogitsLoss() # one-vs-rest binary MIL
# scaler = GradScaler()
###################################
if args.dataset in ['JapaneseVowels','SpokenArabicDigits','CharacterTrajectories','InsectWingbeat']:
trainset = loadorean(args, split='train')
testset = loadorean(args, split='test')
seq_len,num_classes,L_in=trainset.max_len,trainset.num_class,trainset.feat_in
print(f'max lenght {seq_len}')
args.feats_size = L_in
args.num_classes = num_classes
print(f'num class:{args.num_classes}' )
else:
Xtr, ytr, meta = load_classification(name=args.dataset,split='train')
print(Xtr.shape)
word_to_idx = {}
for i in range(len(meta['class_values'])):
word_to_idx[meta['class_values'][i]]=i
Xtr =torch.from_numpy(Xtr).permute(0,2,1).float()
ytr = [word_to_idx[i] for i in ytr]
ytr = F.one_hot(torch.tensor(ytr)).float()
print(ytr.shape)
trainset = TensorDataset(Xtr,ytr)
Xte, yte, _ = load_classification(name=args.dataset,split='test')
Xte =torch.from_numpy(Xte).permute(0,2,1).float()
yte = [word_to_idx[i] for i in yte]
yte = F.one_hot(torch.tensor(yte)).float()
testset = TensorDataset(Xte,yte)
args.feats_size = Xte.shape[-1]
L_in = Xte.shape[-1]
# print(L_in)
num_classes = yte.shape[-1]
args.num_classes = yte.shape[-1]
print(f'num class:{args.num_classes}' )
# args.num_classes = num_classes
seq_len= max(21, Xte.shape[1])
# <------------- define MIL network ------------->
milnet = TimeMIL(args.feats_size,mDim=args.embed,n_classes =num_classes,dropout=args.dropout_node, max_seq_len = seq_len).cuda()
if args.optimizer == 'adamw':
# optimizer = torch.optim.AdamW(milnet.parameters(), lr=args.lr, weight_decay=args.weight_decay)
optimizer = torch.optim.AdamW(milnet.parameters(), lr=args.lr, weight_decay=args.weight_decay)
optimizer =Lookahead(optimizer)
elif args.optimizer == 'sgd':
optimizer = torch.optim.SGD(milnet.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
# optimizer =Lookahead(optimizer)
elif args.optimizer == 'adam':
optimizer = torch.optim.Adam(milnet.parameters(), lr=args.lr, weight_decay=args.weight_decay)
optimizer =Lookahead(optimizer)
elif args.optimizer == 'adamp':
optimizer = AdamP(milnet.parameters(), lr=args.lr, weight_decay=args.weight_decay)
optimizer =Lookahead(optimizer)
trainloader = DataLoader(trainset, args.batchsize, shuffle=True, num_workers=args.num_workers, drop_last=False, pin_memory=True)
# if args.batchsize==1:
# testloader = DataLoader(testset, args.batchsize, shuffle=False, num_workers=args.num_workers, drop_last=False, pin_memory=True)
# else:
testloader = DataLoader(testset, 128, shuffle=False, num_workers=args.num_workers, drop_last=False, pin_memory=True)
best_score = 0
save_path = join(args.save_dir, 'weights')
os.makedirs(save_path, exist_ok=True)
os.makedirs(join(args.save_dir,'lesion'), exist_ok=True)
results_best = None
for epoch in range(1, args.num_epochs + 1):
train_loss_bag = train(trainloader, milnet, criterion, optimizer, epoch,args) # iterate all bags
test_loss_bag,results= test(testloader, milnet, criterion, args)
[avg_score,balanced_avg_score,f1_marco,f1_micro,p_marco,p_micro,r_marco,r_micro,roc_auc_ovo_marco,roc_auc_ovo_micro,roc_auc_ovr_marco,roc_auc_ovr_micro] = results
logger.info('\r Epoch [%d/%d] train loss: %.4f test loss: %.4f, accuracy: %.4f, bal. average score: %.4f, f1 marco: %.4f f1 mirco: %.4f p marco: %.4f p mirco: %.4f r marco: %.4f r mirco: %.4f roc_auc ovo marco: %.4f roc_auc ovo mirco: %.4f roc_auc ovr marco: %.4f roc_auc ovr mirco: %.4f' %
(epoch, args.num_epochs, train_loss_bag, test_loss_bag, avg_score,balanced_avg_score,f1_marco,f1_micro, p_marco,p_micro,r_marco,r_micro,roc_auc_ovo_marco,roc_auc_ovo_micro,roc_auc_ovr_marco,roc_auc_ovr_micro ))
# scheduler.step()
# current_score = (sum(aucs) + avg_score)/3
current_score = avg_score
if current_score >= best_score:
results_best = results
best_score = current_score
print(current_score)
save_name = os.path.join(save_path, 'best_model.pth')
torch.save(milnet.state_dict(), save_name)
#torch.save(milnet, save_name)
logger.info('Best model saved at: ' + save_name)
# logger.info('Best thresholds ===>>> '+ '|'.join('class-{}>>{}'.format(*k) for k in enumerate(thresholds_optimal)))
[avg_score,balanced_avg_score,f1_marco,f1_micro,p_marco,p_micro,r_marco,r_micro,roc_auc_ovo_marco,roc_auc_ovo_micro,roc_auc_ovr_marco,roc_auc_ovr_micro] = results_best
logger.info('\r Best Results: accuracy: %.4f, bal. average score: %.4f, f1 marco: %.4f f1 mirco: %.4f p marco: %.4f p mirco: %.4f r marco: %.4f r mirco: %.4f roc_auc ovo marco: %.4f roc_auc ovo mirco: %.4f roc_auc ovr marco: %.4f roc_auc ovr mirco: %.4f' %
( avg_score,balanced_avg_score,f1_marco,f1_micro, p_marco,p_micro,r_marco,r_micro,roc_auc_ovo_marco,roc_auc_ovo_micro,roc_auc_ovr_marco,roc_auc_ovr_micro ))
# if args.weight_div>0:
# if epoch%10==0:
# print('--------------------Clustering--------------------\n')
# cluster_idx_dict = pre_cluter(trainloader, milnet, criterion, optimizer, args,init= False)
# print('--------------------Clustering finished--------------------\n')
if __name__ == '__main__':
main()