-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDemo.m
41 lines (37 loc) · 1.08 KB
/
Demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
clear
clc
warning off;
path = './';
addpath(genpath(path));
addpath(genpath('./ClusteringEvaluation'));
dataName = 'proteinFold';
load([path,'dataset/',dataName,'_Kmatrix'],'KH','Y');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
numclass = length(unique(Y));
numker = size(KH,3);
num = size(KH,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
KH = kcenter(KH);
KH = knorm(KH);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
qnorm = 2;
H = zeros(num,numclass,numker);
for ker = 1:numker
H(:,:,ker) = mykernelkmeans(KH(:,:,ker), numclass);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
epsionset = [0.1:0.1:0.9];
for ie =1:length(epsionset)
res_mean = 0;
for iter = 1:30
load([path,'./generateAbsentMatrix/',dataName,'_missingRatio_',num2str(epsionset(ie)),...
'_missingIndex_iter_',num2str(iter),'.mat'],'S');
lambda = 2.^(-15:3:15);
for lam = 1:length(lambda)
H_star = IncompleteMultikernelLatefusionclusteringV1Hv(H,numclass,lambda(lam));
res(lam,:) = myNMIACC(H_star,Y,numclass);
end
res_mean = res_mean + res;
end
res_mean = res_mean / 30;
end