-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathTransformer.py
253 lines (207 loc) · 11.9 KB
/
Transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from DataLoader import NormalTableDatabase
from Model import TableInfusing
import sys
from torch.autograd import Variable
import torch
import torch.optim as optim
from torch import nn
import argparse
import pandas
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import math
from utils import sample_sequence
import numpy as np
import math
import nltk
import json
device = torch.device('cuda')
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--do_train', default=False, action="store_true", help="whether to train or test the model")
parser.add_argument('--do_val', default=False, action="store_true", help="whether to train or test the model")
parser.add_argument('--do_verify', default=False, action="store_true", help="whether to train or test the model")
parser.add_argument('--do_test', default=False, action="store_true", help="whether to train or test the model")
parser.add_argument('--do_ppl', default=False, action="store_true", help="whether to train or test the model")
parser.add_argument('--epoch', default=10, type=int, help="whether to train or test the model")
parser.add_argument('--every', default=50, type=int, help="whether to train or test the model")
parser.add_argument('--dim', default=256, type=int, help="whether to train or test the model")
parser.add_argument('--layers', default=3, type=int, help="whether to train or test the model")
parser.add_argument('--head', default=4, type=int, help="whether to train or test the model")
parser.add_argument('--load_from', default='', type=str, help="whether to train or test the model")
parser.add_argument('--dataset', default='table', type=str, help="whether to train or test the model")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_opt()
# if args.dataset == 'table':
dataset = NormalTableDatabase('data/train_lm.json', 'data/val_lm.json', 'data/test_lm.json')
model = TableInfusing(len(dataset.vocab), len(dataset.full_vocab), args.dim, args.layers, args.head)
model.to(device)
if args.do_train:
model.train()
optimizer = optim.Adam(model.parameters(), 2e-4)
criterion = nn.CrossEntropyLoss(ignore_index=0)
if args.load_from != "":
model.load_state_dict(torch.load(args.load_from))
print("loading model from {}".format(args.load_from))
avg_loss = 0
for epoch_idx in range(args.epoch):
print("start training {}th epoch".format(epoch_idx))
dataset.shuffle()
for idx in range(0, dataset.train_len()):
batch = dataset.get_data(idx)
batch = tuple(Variable(t).to(device) for t in batch)
seqs_in, seqs_out, table_in, table_scatters, lookups, line_nos, fields, indexes = batch
model.zero_grad()
optimizer.zero_grad()
logits = model(seqs_in, table_in, table_scatters, lookups, line_nos, fields, indexes)
loss = criterion(logits.view(-1, logits.shape[-1]), seqs_out.view(-1))
avg_loss += loss.item()
loss.backward()
optimizer.step()
if idx % args.every == 0 and idx > 0:
#sys.stdout.write('finished {} samples loss = {} \r'.format(idx, avg_loss / 50))
print('finished {}/{} samples loss = {}, perpelexity = {}'.format(
idx, dataset.train_len(), avg_loss / args.every, math.exp(avg_loss / args.every)))
avg_loss = 0
model.eval()
with torch.no_grad():
losses = []
for idx in range(0, dataset.val_len()):
batch = dataset.get_data(idx)
batch = tuple(Variable(t).to(device) for t in batch)
seqs_in, seqs_out, table_in, table_scatters, lookups, line_nos, fields, indexes = batch
logits = model(seqs_in, table_in, table_scatters, lookups, line_nos, fields, indexes)
loss = criterion(logits.view(-1, logits.shape[-1]), seqs_out.view(-1))
losses.append(loss)
# ppls.append(math.exp(loss))
avg_loss = sum(losses) / len(losses)
sys.stdout.write("perplexity is {} \r".format(math.exp(avg_loss)))
avg_loss = sum(losses) / len(losses)
print("total perplexity is {}".format(math.exp(avg_loss)))
torch.save(model.state_dict(), 'models/transformer_ep{}.pt'.format(epoch_idx))
model.train()
if args.do_val:
model.eval()
criterion = nn.CrossEntropyLoss(ignore_index=0)
model.load_state_dict(torch.load(args.load_from))
print("loading model from {}".format(args.load_from))
with torch.no_grad():
losses = []
for idx in range(0, dataset.val_len()):
batch = dataset.get_data(idx)
batch = tuple(Variable(t).to(device) for t in batch)
seqs_in, seqs_out, table_in, table_scatters, lookups, line_nos, fields, indexes = batch
logits = model(seqs_in, table_in, table_scatters, lookups, line_nos, fields, indexes)
loss = criterion(logits.view(-1, logits.shape[-1]), seqs_out.view(-1))
losses.append(loss)
avg_loss = sum(losses) / len(losses)
sys.stdout.write("perplexity is {} \r".format(math.exp(avg_loss)))
avg_loss = sum(losses) / len(losses)
print("total perplexity is {}".format(math.exp(avg_loss)))
if args.do_ppl:
model.eval()
criterion = nn.CrossEntropyLoss(ignore_index=0)
model.load_state_dict(torch.load(args.load_from))
print("loading model from {}".format(args.load_from))
with torch.no_grad():
losses = []
for idx in range(0, dataset.test_len()):
batch = dataset.get_data(idx, 'test', False)
batch = tuple(Variable(t).to(device) for t in batch)
seqs_in, seqs_out, table_in, table_scatters, lookups, line_nos, fields, indexes = batch
logits = model(seqs_in, table_in, table_scatters, lookups, line_nos, fields, indexes)
loss = criterion(logits.view(-1, logits.shape[-1]), seqs_out.view(-1))
losses.append(loss)
avg_loss = sum(losses) / len(losses)
sys.stdout.write("perplexity is {} \r".format(math.exp(avg_loss)))
avg_loss = sum(losses) / len(losses)
print("total perplexity is {}".format(math.exp(avg_loss)))
if args.do_test:
model.eval()
model.load_state_dict(torch.load(args.load_from))
print("loading model from {}".format(args.load_from))
results = {}
sent_bleus_1 = []
sent_bleus_2 = []
sent_bleus_3 = []
sent_bleus_4 = []
with open('data/table_to_page.json') as f:
mapping = json.load(f)
with torch.no_grad():
for idx in range(0, dataset.test_len()):
#print("sampling from {}".format(dataset.get_item(idx, 'test')), file=f)
table_id = dataset.get_item(idx, 'test')
table = pandas.read_csv('data/all_csv/' + table_id, '#')
results[table_id] = []
*batch, input_fields = dataset.get_data(idx, 'test', False, with_fields=True)
references = dataset.get_reference(idx, 'test')
batch = tuple(Variable(t).to(device) for t in batch)
seqs_in, seqs_out, table_in, table_scatters, lookups, line_nos, fields, indexes = batch
enc_inp = model.encode(table_in, lookups, line_nos, fields, indexes)
sents = [[] for _ in range(seqs_in.shape[0])]
preds = seqs_in[:, :1]
finished = set()
for i in range(30):
logits = model.decode(preds, enc_inp, table_scatters)[:, -1, :]
preds_i = torch.argmax(logits, -1)
tmp = []
for j, _ in enumerate(preds_i):
word = dataset.full_ivocab[_.item()]
if word == '<EOS>':
finished.add(j)
elif j not in finished:
sents[j].append(word)
if _.item() >= len(dataset.vocab):
tmp.append(dataset.vocab['<UNK>'])
else:
tmp.append(_.item())
preds = torch.cat([preds, torch.LongTensor(tmp).to(device).unsqueeze(-1)], -1)
preds = preds.cpu().data.numpy()
for hypothesis, input_field in zip(sents, input_fields):
results[table_id].append(' '.join(hypothesis))
sent_bleus_1.append(nltk.translate.bleu_score.sentence_bleu(
references, hypothesis, weights=(1, 0, 0)))
sent_bleus_2.append(nltk.translate.bleu_score.sentence_bleu(
references, hypothesis, weights=(0.5, 0.5, 0)))
sent_bleus_3.append(nltk.translate.bleu_score.sentence_bleu(
references, hypothesis, weights=(0.33, 0.33, 0.33)))
bleu_1 = sum(sent_bleus_1) / len(sent_bleus_1)
bleu_2 = sum(sent_bleus_2) / len(sent_bleus_2)
bleu_3 = sum(sent_bleus_3) / len(sent_bleus_3)
sys.stdout.write("finished {}/{} BLEU score {}/{}/{} \r".format(idx,
dataset.test_len(), bleu_1, bleu_2, bleu_3))
print("total corpus BLEU score = {}/{}/{}".format(bleu_1, bleu_2, bleu_3))
with open('outputs/field_infusing.json', 'w') as f:
json.dump(results, f, indent=2)
if args.do_verify:
dataset = NormalTableDatabase(None, 'data/val_lm_pos_neg.json', 'data/test_lm_pos_neg.json')
model.load_state_dict(torch.load(args.load_from))
model.eval()
print("loading model from {}".format(args.load_from))
criterion = nn.CrossEntropyLoss(reduction='none', ignore_index=0)
correct, total = 0, 0
with torch.no_grad():
for idx in range(0, dataset.test_len()):
batch_pos, batch_neg = dataset.get_pair_data(idx, option='test')
batch = tuple(Variable(t).to(device) for t in batch_pos)
seqs_in, seqs_out, table_in, table_scatters, lookups, line_nos, fields, indexes = batch
logits = model(seqs_in, table_in, table_scatters, lookups, line_nos, fields, indexes)
loss = criterion(logits.view(-1, logits.shape[-1]), seqs_out.view(-1))
loss = loss.view(seqs_in.shape[0], -1)
mask = (loss > 0).float()
loss_per_instance = (loss * mask).sum(1) / mask.sum(1)
pos_perpelexity_per_instance = torch.exp(loss_per_instance.cpu().data)
batch = tuple(Variable(t).to(device) for t in batch_neg)
seqs_in, seqs_out, table_in, table_scatters, lookups, line_nos, fields, indexes = batch
logits = model(seqs_in, table_in, table_scatters, lookups, line_nos, fields, indexes)
loss = criterion(logits.view(-1, logits.shape[-1]), seqs_out.view(-1))
loss = loss.view(seqs_in.shape[0], -1)
mask = (loss > 0).float()
loss_per_instance = (loss * mask).sum(1) / mask.sum(1)
neg_perpelexity_per_instance = torch.exp(loss_per_instance.cpu().data)
comparison = (pos_perpelexity_per_instance < neg_perpelexity_per_instance).float()
correct += comparison.sum(-1).item()
total += comparison.shape[0]
sys.stdout.write('finished {}/{} accuracy {} \r'.format(idx, dataset.test_len(), correct / total))
print('total accuracy = {}'.format(correct / total))