-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtraining.py
189 lines (144 loc) · 7.64 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import utils
from torch.utils.tensorboard import SummaryWriter
from tqdm.autonotebook import tqdm
from torch.utils.data import DataLoader
import modules
import time
import numpy as np
import os
import glob
import re
import shutil
def train_with_signed_distance(model,
train_dataloader,
val_dataloader,
epochs,
lr,
steps_til_summary,
epochs_til_checkpoint,
model_dir,
supervision='dense'):
assert (supervision in ['levelset', 'dense'])
optim = torch.optim.Adam(lr=lr, params=model.parameters())
if not os.path.exists(model_dir):
os.makedirs(model_dir)
summaries_dir = os.path.join(model_dir, 'summaries')
utils.cond_mkdir(summaries_dir)
checkpoints_dir = os.path.join(model_dir, 'checkpoints')
utils.cond_mkdir(checkpoints_dir)
writer = SummaryWriter(summaries_dir)
total_steps = 0
with tqdm(total=len(train_dataloader) * epochs) as pbar:
train_losses = []
for epoch in range(epochs):
for step, (model_input, gt) in enumerate(train_dataloader):
start_time = time.time()
model_input = {key: value.cuda() for key, value in model_input.items()}
gt = {key: value.cuda() for key, value in gt.items()}
if supervision=='levelset': # Use level_set only
model_input_level_set = model_input.copy()
model_input_level_set['coords'] = model_input_level_set['level_set']
model_input_level_set = {key: value.cuda() for key, value in model_input_level_set.items()}
pred_sd, z = model.legacy_forward(**model_input_level_set)
loss = modules.sdf_loss(pred_sd, gt['ls_sds']) + torch.mean(z ** 2)
elif supervision=='dense': # Use standard coords
pred_sd, z = model.legacy_forward(**model_input)
loss = modules.sdf_loss(pred_sd, gt['sds']) + torch.mean(z ** 2)
train_losses.append(loss.item())
writer.add_scalar("train_loss", loss, total_steps)
optim.zero_grad()
loss.backward()
optim.step()
pbar.update(1)
if not total_steps % steps_til_summary:
corrected_loss = utils.evaluate_model(model, train_dataloader)
writer.add_scalar('corrected_loss', corrected_loss, total_steps)
pred_sd, z = model.legacy_forward(**model_input)
tqdm.write("Epoch %d, Total loss %0.6f, iteration time %0.6f" % (epoch, corrected_loss, time.time() - start_time))
utils.write_summaries(pred_sd, model_input, gt, writer, total_steps, 'train_')
if val_dataloader is not None:
print("Running validation set...")
model.eval()
with torch.no_grad():
val_losses = []
for meta_batch in val_dataloader:
pred_sd = model(meta_batch)
val_loss = modules.sdf_loss(pred_sd, meta_batch['test'][1].cuda())
val_losses.append(val_loss)
writer.add_scalar("val_loss", np.mean(val_losses), total_steps)
utils.write_meta_summaries(pred_sd, meta_batch, writer, total_steps, 'val_')
model.train()
total_steps += 1
if not epoch % epochs_til_checkpoint and epoch:
torch.save(model.state_dict(),
os.path.join(checkpoints_dir, 'model_final.pth'))
np.savetxt(os.path.join(checkpoints_dir, 'train_losses_final.txt'),
np.array(train_losses))
torch.save(model.state_dict(),
os.path.join(checkpoints_dir, 'model_final.pth'))
np.savetxt(os.path.join(checkpoints_dir, 'train_losses_final.txt'),
np.array(train_losses))
def train_with_signed_distance_meta(model,
train_dataloader,
val_dataloader,
epochs,
lr,
steps_til_summary,
epochs_til_checkpoint,
model_dir):
optim = torch.optim.Adam(lr=lr, params=model.parameters())
if os.path.exists(model_dir):
val = input("The model directory %s exists. Overwrite? (y/n)"%model_dir)
if val == 'y':
shutil.rmtree(model_dir)
os.makedirs(model_dir)
summaries_dir = os.path.join(model_dir, 'summaries')
utils.cond_mkdir(summaries_dir)
checkpoints_dir = os.path.join(model_dir, 'checkpoints')
utils.cond_mkdir(checkpoints_dir)
num_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print (f'\n\nTraining model with {num_parameters} parameters\n\n')
writer = SummaryWriter(summaries_dir)
total_steps = 0
with tqdm(total=len(train_dataloader) * epochs) as pbar:
train_losses = []
for epoch in range(epochs):
for step, meta_batch in enumerate(train_dataloader):
start_time = time.time()
pred_sd, _ = model(meta_batch)
loss = modules.sdf_loss(pred_sd, meta_batch['test'][1].cuda())
train_losses.append(loss)
writer.add_scalar("train_loss", loss, total_steps)
optim.zero_grad()
loss.backward()
optim.step()
pbar.update(1)
tqdm.write(
"Epoch %d, Total loss %0.6f, iteration time %0.6f" %
(epoch, loss, time.time() - start_time))
if not total_steps % steps_til_summary:
utils.write_meta_summaries(pred_sd, meta_batch, writer, total_steps, 'train_')
print("Running validation set...")
model.eval()
with torch.no_grad():
val_losses = []
for val_idx, meta_batch in enumerate(val_dataloader):
pred_sd, _ = model(meta_batch)
val_loss = modules.sdf_loss(pred_sd, meta_batch['test'][1].cuda())
val_losses.append(val_loss.cpu().numpy())
if not val_idx:
utils.write_meta_summaries(pred_sd, meta_batch, writer, total_steps, 'val_')
writer.add_scalar("val_loss", np.mean(val_losses), total_steps)
tqdm.write("Validation loss %0.6e" % loss)
model.train()
total_steps += 1
if not epoch % epochs_til_checkpoint:
torch.save(model.state_dict(),
os.path.join(checkpoints_dir, 'epoch_%03d.pth'%epoch))
np.savetxt(os.path.join(checkpoints_dir, 'train_losses_epoch_%03d.txt'%epoch),
np.array(train_losses))
torch.save(model.state_dict(),
os.path.join(checkpoints_dir, 'model_final.pth'))
np.savetxt(os.path.join(checkpoints_dir, 'train_losses_final.txt'),
np.array(train_losses))