-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMetaAnalyses.m
162 lines (136 loc) · 6.95 KB
/
MetaAnalyses.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
% To conduct a meta-analyses on all the subject's data
cd ('/Users/cml2/Desktop/YiMerfeldCSD')
path = pwd;
subject1 = load([path '/data/subject1']);
subject2 = load([path '/data/subject2']);
subject3 = load([path '/data/subject3']);
subject4 = load([path '/data/subject4']);
%20 vs 100 trials comparison
%--------------------------------------
%Sigma for the repeated measures anova
%20 trials CSD vs 100 trials CSD
%Create the matrix for data storage, where subjects are rows
allSubjects_Sigma_20CSD_100CSD = nan(4,12);
%Store the data from each subject
% subject1
allSubjects_Sigma_20CSD_100CSD(1,1:6) = subject1.finalSigma(2,:); %20 trials
allSubjects_Sigma_20CSD_100CSD(1,7:12) = subject1.finalSigma(18,:); %100 trials
% subject2
allSubjects_Sigma_20CSD_100CSD(2,1:6) = subject2.finalSigma(2,:); %20 trials
allSubjects_Sigma_20CSD_100CSD(2,7:12) = subject2.finalSigma(18,:); %100 trials
% subject3
allSubjects_Sigma_20CSD_100CSD(3,1:6) = subject3.finalSigma(2,:); %20 trials
allSubjects_Sigma_20CSD_100CSD(3,7:12) = subject3.finalSigma(18,:); %100 trials
% subject4
allSubjects_Sigma_20CSD_100CSD(4,1:6) = subject4.finalSigma(2,:); %20 trials
allSubjects_Sigma_20CSD_100CSD(4,7:12) = subject4.finalSigma(18,:); %100 trials
%--------------------------------------
%Sigma for the repeated measures anova
%20 trials CSD vs 100 trials psy
%Create the matrix for data storage, where subjects are rows
allSubjects_Sigma_20CSD_100psy = nan(4,12);
%Store the data from each subject
% subject1
allSubjects_Sigma_20CSD_100psy(1,1:6) = subject1.finalSigma(2,:); %20 trials, CSD
allSubjects_Sigma_20CSD_100psy(1,7:12) = subject1.initialSigma(18,:); %100 trials, psy
% subject2
allSubjects_Sigma_20CSD_100psy(2,1:6) = subject2.finalSigma(2,:); %20 trials, CSD
allSubjects_Sigma_20CSD_100psy(2,7:12) = subject2.initialSigma(18,:); %100 trials, psy
% subject3
allSubjects_Sigma_20CSD_100psy(3,1:6) = subject3.finalSigma(2,:); %20 trials, CSD
allSubjects_Sigma_20CSD_100psy(3,7:12) = subject3.initialSigma(18,:); %100 trials, psy
% subject4
allSubjects_Sigma_20CSD_100psy(4,1:6) = subject4.finalSigma(2,:); %20 trials, CSD
allSubjects_Sigma_20CSD_100psy(4,7:12) = subject4.initialSigma(18,:); %100 trials, psy
%--------------------------------------
%Sigma for the repeated measures anova
%20 trials psy vs 100 trials psy
%Create the matrix for data storage, where subjects are rows
allSubjects_Sigma_20psy_100psy = nan(4,12);
%Store the data from each subject
% subject1
allSubjects_Sigma_20psy_100psy(1,1:6) = subject1.initialSigma(2,:); %20 trials, psy
allSubjects_Sigma_20psy_100psy(1,7:12) = subject1.initialSigma(18,:); %100 trials, psy
% subject2
allSubjects_Sigma_20psy_100psy(2,1:6) = subject2.initialSigma(2,:); %20 trials, psy
allSubjects_Sigma_20psy_100psy(2,7:12) = subject2.initialSigma(18,:); %100 trials, psy
% subject3
allSubjects_Sigma_20psy_100psy(3,1:6) = subject3.initialSigma(2,:); %20 trials, psy
allSubjects_Sigma_20psy_100psy(3,7:12) = subject3.initialSigma(18,:); %100 trials, psy
% subject4
allSubjects_Sigma_20psy_100psy(4,1:6) = subject4.initialSigma(2,:); %20 trials, psy
allSubjects_Sigma_20psy_100psy(4,7:12) = subject4.initialSigma(18,:); %100 trials, psy
%--------------------------------------
%Sigma for the within-subjects t-test (This is unused)
%20 trials vs 100 trials psy
%Create the matrix for data storage, where subjects are rows
allSubjects_AverageSigma_20psy_100psy = nan(4,2);
%Store the data from each subject
% subject1
allSubjects_AverageSigma_20psy_100psy(1,1) = mean(subject1.initialSigma(2,:)); %20 trials, psy
allSubjects_AverageSigma_20psy_100psy(1,2) = mean(subject1.initialSigma(18,:)); %100 trials, psy
% subject2
allSubjects_AverageSigma_20psy_100psy(2,1) = mean(subject2.initialSigma(2,:)); %20 trials, psy
allSubjects_AverageSigma_20psy_100psy(2,2) = mean(subject2.initialSigma(18,:)); %100 trials, psy
% subject3
allSubjects_AverageSigma_20psy_100psy(3,1) = mean(subject3.initialSigma(2,:)); %20 trials, psy
allSubjects_AverageSigma_20psy_100psy(3,2) = mean(subject3.initialSigma(18,:)); %100 trials, psy
% subject4
allSubjects_AverageSigma_20psy_100psy(4,1) = mean(subject4.initialSigma(2,:)); %20 trials, psy
allSubjects_AverageSigma_20psy_100psy(4,2) = mean(subject4.initialSigma(18,:)); %100 trials, psy
%--------------------------------------
%------------ Mu --------------
%--------------------------------------
%Mus for the repeated measures anova
%20 trials CSD vs 100 trials CSD
%Create the matrix for data storage, where subjects are rows
allSubjects_Mu_20CSD_100CSD = nan(4,12);
%Store the data from each subject
% subject1
allSubjects_Mu_20CSD_100CSD(1,1:6) = subject1.finalMu(2,:); %20 trials, CSD
allSubjects_Mu_20CSD_100CSD(1,7:12) = subject1.finalMu(18,:); %100 trials, CSD
% subject2
allSubjects_Mu_20CSD_100CSD(2,1:6) = subject2.finalMu(2,:); %20 trials, CSD
allSubjects_Mu_20CSD_100CSD(2,7:12) = subject2.finalMu(18,:); %100 trials, CSD
% subject3
allSubjects_Mu_20CSD_100CSD(3,1:6) = subject3.finalMu(2,:); %20 trials, CSD
allSubjects_Mu_20CSD_100CSD(3,7:12) = subject3.finalMu(18,:); %100 trials, CSD
% subject4
allSubjects_Mu_20CSD_100CSD(4,1:6) = subject4.finalMu(2,:); %20 trials, CSD
allSubjects_Mu_20CSD_100CSD(4,7:12) = subject4.finalMu(18,:); %100 trials, CSD
%--------------------------------------
%Mus for the repeated measures anova
%20 trials CSD vs 100 trials psy
%Create the matrix for data storage, where subjects are rows
allSubjects_Mu_20CSD_100psy = nan(4,12);
%Store the data from each subject
% subject1
allSubjects_Mu_20CSD_100psy(1,1:6) = subject1.finalMu(2,:); %20 trials, CSD
allSubjects_Mu_20CSD_100psy(1,7:12) = subject1.initialMu(18,:); %100 trials, psy
% subject2
allSubjects_Mu_20CSD_100psy(2,1:6) = subject2.finalMu(2,:); %20 trials, CSD
allSubjects_Mu_20CSD_100psy(2,7:12) = subject2.initialMu(18,:); %100 trials, psy
% subject3
allSubjects_Mu_20CSD_100psy(3,1:6) = subject3.finalMu(2,:); %20 trials, CSD
allSubjects_Mu_20CSD_100psy(3,7:12) = subject3.initialMu(18,:); %100 trials, psy
% subject4
allSubjects_Mu_20CSD_100psy(4,1:6) = subject4.finalMu(2,:); %20 trials, CSD
allSubjects_Mu_20CSD_100psy(4,7:12) = subject4.initialMu(18,:); %100 trials, psy
%--------------------------------------
%Mu for the repeated measures anova
%20 trials psy vs 100 trials psy
%Create the matrix for data storage, where subjects are rows
allSubjects_Mu_20psy_100psy = nan(4,12);
%Store the data from each subject
% subject1
allSubjects_Mu_20psy_100psy(1,1:6) = subject1.initialMu(2,:); %20 trials, psy
allSubjects_Mu_20psy_100psy(1,7:12) = subject1.initialMu(18,:); %100 trials, psy
% subject2
allSubjects_Mu_20psy_100psy(2,1:6) = subject2.initialMu(2,:); %20 trials, psy
allSubjects_Mu_20psy_100psy(2,7:12) = subject2.initialMu(18,:); %100 trials, psy
% subject3
allSubjects_Mu_20psy_100psy(3,1:6) = subject3.initialMu(2,:); %20 trials, psy
allSubjects_Mu_20psy_100psy(3,7:12) = subject3.initialMu(18,:); %100 trials, psy
% subject4
allSubjects_Mu_20psy_100psy(4,1:6) = subject4.initialMu(2,:); %20 trials, psy
allSubjects_Mu_20psy_100psy(4,7:12) = subject4.initialMu(18,:); %100 trials, psy