
Loop Diagonalization

Vedant Kumar
vsk@berkeley.edu

August 8, 2014

1 Abstract

The eigenvalue equation Mv = λv is a powerful statement about matrix and
scalar multiplications. In the context of compiler optimization, we can use
it to transform linearizable loops which run in O(n) steps into matrix opera-
tions which run in O(log n) steps. This paper defines loop diagonalization (the
process of rewriting linearizable loops as two matrix multiplies), discusses the
implementation of this optimization with LLVM, and discusses the advantages
and limitations of this method.

2 Overview

Roughly speaking, a linearizable loop may equally well be represented as a
matrix M . Let the loop’s state variables reside in a vector v. Each iteration of
the loop effects the update v′ = Mv.

It follows inductively that if one iteration of a linearizable loop gives Mv,
n iterations of the loop can be simulated by computing Mnv. Performing this
matrix exponentiation naively requires up to O(nm3) scalar multiplictaions.

Linear algebra comes to the rescue. Recall the equation M = PDP−1. The
column vectors of P are the eigenvectors of M , and the diagonal matrix D
contains the corresponding eigenvalues. We can find this eigendecomposition
for any square M so long as P is invertible.

It is known thatMn = PDnP−1, and thatDn can be computed inO(m log n)
steps using the repeated squaring algorithm. With these facts we can replace
linearizable loops with fast matrix operations.

3 Diagonalization

The following definitions are useful:

1



Def. Linearizable Loop: A tuple (L,M, v) where L is a list of basic blocks
with a preheader and one backedge, M is a m by m square matrix with m lin-
early independent eigenvectors, and v is a vector of state variables. Let v′ = Mv:
the only permissible instructions in L are the arithmetic operations which con-
tribute to the goal of updating v to v′ with no other side effects, excepting the
branch and jump instructions required to construct a loop.

Def. Loop Diagonalization: Given a program containing a linearizable
loop (L,M, v), replace L with a single basic block that computes Mnv using
PDnP−1v.

Loop diagonalization transforms functions in O(nm3) into two matrix mul-
tiplications and a diagonal matrix exponentiation, which is in O(m3 +m log n).
This can result in an appreciable increase in program efficiency, as will be shown.

4 The Fibonacci Example

Consider the iterative procedure for computing the n-th Fibonacci number:

function fib(n)
a← 1
b← 1
for i ∈ [2...n] do

tmp← a
a← b
b← tmp+ b

end for
return b

end function

The state vector is v = (a, b)T . Initially, v0 = (1, 1)T . After each iteration
of the loop, a′ = b and b′ = a+ b. These linear combinations are encoded by:

M =

[
0 1
1 1

]
Let φ = 1+

√
5

2 . The eigenvalues of M are φ and 1 − φ. The corresponding
eigenvectors are (1, φ)T and (φ,−1)T . M is diagonalizable because its eigenval-
ues are distinct and its eigenvectors are linearly independent:

M =

[
1 φ
φ −1

] [
φ 0
0 1− φ

] [
1 φ
φ −1

]−1
Given M = PDP−1, Mn = PDnP−1:

2



Mn =

[
1 φ
φ −1

] [
φ 0
0 1− φ

]n [
1 φ
φ −1

]−1
=

[
1 φ
φ −1

] [
φn 0
0 (1− φ)n

] [
1 φ
φ −1

]−1
Now the Fibonacci loop has been diagonalized:

function fib(n)
(a, b)T ← PDn−1P−1(1, 1)T

return b
end function

5 Implementation

I implemented automatic loop diagonalization using the LLVM compiler in-
frastructure. This involved creating an instance of llvm::LoopPass (ADPass)
which can be loaded from a dynamic library. ADPass determines if a loop is
linearizable by filtering out unsupported instructions. It then builds the loop
matrix M by performing a depth-first search on the phi-nodes in the loop. This
search allows the pass to determine the coefficients of every linear combination
of v in the loop, which are exactly the entries of M . Next, the pass uses the
Eigen library to find the eigendecomposition of M . Finally the pass deletes the
original loop, inserts newly generated bitcode corresponding to the decomposi-
tion into the program, and rewires the values flowing into the exit phi-nodes.
The source code is available under a non-restrictive free software license here.

6 Testing

To test the loop diagonalization algorithm, I created a test suite of iterative
processes written in C++ and compiled them at the highest optimization levels
available in LLVM 3.2 and clang++ on Linux x86-64. I then created alternate
versions of the binaries which were post-processed with ADPass. ADPass was able
to diagonalize basic loops but depended upon pre-processing by the compiler
to eliminate stack-spills and canonicalize loops. It produced good results for
all tested programs. I did not attempt to analyze loops which I knew the pass
cannot optimize.

Consider the iterative Fibonacci procedure discussed in a previous section.
I measured the time it took to call fib(0), ..., fib(200) 50,000 times each. I
first tried this with the normal binary and then compared its performance to
the auto-diagonalized binary. As expected, the normal program (left) scales
linearly with the size of the input, whereas the diagonalized program (right)
exhibits O(log n) performance.

3

https://github.com/vedantk/auto-diagonalize


7 Discussion

Matrix decompositions have applications in many fields, but their use in com-
piler loop optimizations appears to be novel 1. It isn’t clear if this optimization
pays for its implementation complexity.

Leaving the issue of practicality aside, there are important technical limita-
tions to ADPass. The most severe restriction is that function calls, branches, and
other instructions with unpredictable side effects cannot occur within a lineariz-
able loop. In general it is not possible to lift this draconian restriction without
solving undecidable problems such as ‘when exactly is this branch taken?’ and
‘does this function call return?’. Another problem is that there is inherent nu-
merical instability in IEEE 754 floating point numbers, which means that the
effects of auto-diagonalization are not always completely transparent.

With that said, we’re left with a somewhat academic optimization that pro-
duces some interesting results. It allows linearizable O(nm3) processes to run
in O(m3 +m log n), using the simple magic trick Mv = λv.

8 References

1. LLVM, http://llvm.org/.

2. Eigen, v3. Gaël Guennebaud and Benôıt Jacob and others. http://eigen.

tuxfamily.org.

1This might have been true when it was written in 2012, but papers on abstract acceleration
of general linear loops have been published since then.

4

http://llvm.org/
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

	Abstract
	Overview
	Diagonalization
	The Fibonacci Example
	Implementation
	Testing
	Discussion
	References

