-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_vggface2_oracle.py
209 lines (153 loc) · 7.43 KB
/
train_vggface2_oracle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python3
import os
import pickle
import argparse
import numpy as np
import torch
import torch.nn as nn
from PIL import Image
from tqdm import tqdm
from models.OracleResnetModel import OracleResnet
from data.faceattribute_dataset import FaceAttributesDataset
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_dir', type=str, default='/path/to/checkpoints', help='the path of the checkpoints')
parser.add_argument('--dataroot', type=str, default='/path/to/dataroot', help='the path of the dataroot')
parser.add_argument('--celeba_or_celebamhq', type=str, default='celebamhq')
config=parser.parse_args()
class Args:
if config.celeba_or_celebamhq == "celebamhq":
oracle_name = 'celebamaskhq'
image_path_train = os.path.join(config.dataroot, "CelebAMask-HQ", "CelebAMask-HQ", "train", "images")
image_path_val = os.path.join(config.dataroot, "CelebAMask-HQ", "CelebAMask-HQ", "test", "images")
attributes_path = os.path.join(config.dataroot, "CelebAMask-HQ", "CelebAMask-HQ", "CelebAMask-HQ-attribute-anno.txt")
elif config.celeba_or_celebamhq == "celeba":
oracle_name = 'celeba'
image_path_train = os.path.join(config.dataroot, "celeba_squared_128", "img_squared128_celeba_train")
image_path_val = os.path.join(config.dataroot, "celeba_squared_128", "img_squared128_celeba_test")
attributes_path = os.path.join(config.dataroot, "celeba_squared_128", "list_attr_celeba.txt")
optimizer = 'adam'
lr = 0.0001
step_size = 10
gamma_scheduler = 0.5
num_epochs = 5
oracle_pretraining_path = os.path.join(config.checkpoint_dir, "vggface2_pretrainings_for_oracle/resnet50_ft_dag.pth")
opt=Args()
# Prepare data
data_train = FaceAttributesDataset(image_path=opt.image_path_train,attributes_path=opt.attributes_path,load_size=(224,224))
data_val = FaceAttributesDataset(image_path=opt.image_path_val,attributes_path=opt.attributes_path,load_size=(224,224))
dataloader_train = torch.utils.data.DataLoader(data_train,batch_size=32, shuffle=True,num_workers=4)
dataloader_val = torch.utils.data.DataLoader(data_val,batch_size=32, shuffle=False,num_workers=4)
def train_one_epoch():
print("Number of batches:", len(dataloader_train))
total_loss = 0
stat_loss = 0
total_acc = np.zeros(40)
stat_acc = np.zeros(40)
model.train()
for batch_idx, batch_data in enumerate(tqdm(dataloader_train)):
batch_data['image'] = batch_data['image'].to(device)
batch_data['attributes'] = batch_data['attributes'].to(device)
# Forward pass
optimizer.zero_grad()
inputs = batch_data['image']
pred = model(inputs)
pred_labels = torch.where(pred > 0.5, 1.0, 0.0)
real_labels = torch.index_select(batch_data['attributes'], 1, torch.tensor(list(range(40))).to(device))
# Compute loss and gradients
loss = criterion(pred,real_labels)
acc = compute_accuracy(pred_labels,real_labels)
stat_loss += loss.item()
total_loss += loss.item()
stat_acc += acc
total_acc += acc
loss.backward()
optimizer.step()
batch_interval = 50
if (batch_idx+1) % batch_interval == 0:
log_string(' ---- batch: %03d ----' % (batch_idx+1))
log_string('mean loss on the last 50 batches: %f'%(stat_loss/batch_interval))
log_string('mean accuracy on the last 50 batches: '+ str(stat_acc/batch_interval))
log_string('mean acc. across the different attributes: ' + str(np.mean(stat_acc/batch_interval)))
stat_loss = 0
stat_acc = 0
total_mean_loss = total_loss / len(dataloader_train)
total_mean_acc = total_acc / len(dataloader_train)
log_string('mean loss over training set: %f' % (total_mean_loss))
log_string('mean accuracy over training set: ' + str(total_mean_acc))
log_string('mean acc. across the different attributes: '+str(np.mean(total_mean_acc)))
return total_mean_loss
def evaluate_one_epoch():
model.eval()
total_loss = 0
stat_loss = 0
total_acc = np.zeros(40)
stat_acc = np.zeros(40)
print("Number of batches:", len(dataloader_val))
for batch_idx, batch_data in enumerate(tqdm(dataloader_val)):
batch_data['image'] = batch_data['image'].to(device)
batch_data['attributes'] = batch_data['attributes'].to(device)
# Forward pass
inputs = batch_data['image']
with torch.no_grad():
pred = model(inputs)
pred_labels = torch.where(pred > 0.5 , 1.0,0.0)
real_labels = torch.index_select(batch_data['attributes'], 1, torch.tensor(list(range(40))).to(device))
# Compute loss and metrics
loss = criterion(pred, real_labels)
acc = compute_accuracy(pred_labels, real_labels)
stat_loss += loss.item()
total_loss += loss.item()
stat_acc += acc
total_acc += acc
batch_interval = 50
if (batch_idx + 1) % batch_interval == 0:
log_string(' ---- batch: %03d ----' % (batch_idx + 1))
log_string('mean loss on the last 50 batches: %f' % (stat_loss/batch_interval))
log_string('mean accuracy on the last 50 batches: ' + str(stat_acc/batch_interval))
log_string('mean acc. across the different attributes: ' + str(np.mean(stat_acc/batch_interval)))
stat_loss = 0
stat_acc = 0
total_mean_loss = total_loss / len(dataloader_val)
total_mean_acc = total_acc / len(dataloader_val)
log_string('mean loss over validation set: %f' % (total_mean_loss))
log_string('mean accuracy over validation set: ' + str(total_mean_acc))
log_string('mean acc. across the different attributes: ' + str(np.mean(total_mean_acc)))
return total_mean_loss
# Load model
model = OracleResnet(weights_path=opt.oracle_pretraining_path, freeze_layers=False, unfreeze_last_block=True)
model.to(device)
# Prepare optimizer
if opt.optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(),lr=opt.lr)
else:
optimizer = torch.optim.SGD(model.parameters(),lr=opt.lr)
# Prepare loss
criterion = nn.BCELoss(reduction='mean')
def compute_accuracy(pred, target):
same_ids = (pred == target).float().cpu()
return torch.mean(same_ids,axis=0).numpy()
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opt.step_size, gamma=opt.gamma_scheduler, verbose=True)
LOG_DIR = os.path.join(config.checkpoint_dir, "oracle_attribute", opt.oracle_name)
if not os.path.exists(LOG_DIR):
os.mkdir(LOG_DIR)
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'a')
LOG_FOUT.write(str(opt)+'\n')
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
lowest_loss = 100000
start_epoch=0
log_string("Starting training from the beginning.")
for epoch in range(start_epoch, opt.num_epochs):
log_string(' **** EPOCH: %03d ****' % (epoch+1))
train_one_epoch()
# Evaluate
log_string(' **** EVALUATION AFTER EPOCH %03d ****' % (epoch+1))
total_mean_loss = evaluate_one_epoch()
if total_mean_loss < lowest_loss:
lowest_loss = total_mean_loss
save_dict = {'epoch': epoch+1, 'optimizer_state_dict': optimizer.state_dict(), 'loss': total_mean_loss, 'model_state_dict': model.state_dict()}
torch.save(save_dict, os.path.join(config.checkpoint_dir, "oracle_attribute", opt.oracle_name, 'checkpoint.tar'))
scheduler.step()