Skip to content

Commit b7437cd

Browse files
committed
📝 Add pylint/tests badges
1 parent 93f9636 commit b7437cd

File tree

1 file changed

+17
-5
lines changed

1 file changed

+17
-5
lines changed

README.md

+17-5
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,7 @@ Principal Component Anlaysis (PCA) in PyTorch. The intention is to provide a
44
simple and easy to use implementation of PCA in PyTorch, the most similar to
55
the `sklearn`'s PCA as possible (in terms of API and, of course, output).
66

7+
[![Release](https://img.shields.io/github/v/tag/valentingol/torch_pca?label=Pypi&logo=pypi&logoColor=yellow)](https://pypi.org/project/torch_pca/)
78
![PythonVersion](https://img.shields.io/badge/python-3.8%20%7E%203.11-informational)
89
![PytorchVersion](https://img.shields.io/badge/pytorch-1.8%20%7E%201.13%20%7C%202.0+-informational)
910

@@ -17,6 +18,17 @@ the `sklearn`'s PCA as possible (in terms of API and, of course, output).
1718
[![Flake8](https://github.com/valentingol/torch_pca/actions/workflows/flake.yaml/badge.svg)](https://github.com/valentingol/Dinosor/actions/workflows/flake.yaml)
1819
[![Pydocstyle](https://github.com/valentingol/torch_pca/actions/workflows/pydocstyle.yaml/badge.svg)](https://github.com/valentingol/Dinosor/actions/workflows/pydocstyle.yaml)
1920
[![MyPy](https://github.com/valentingol/torch_pca/actions/workflows/mypy.yaml/badge.svg)](https://github.com/valentingol/Dinosor/actions/workflows/mypy.yaml)
21+
[![PyLint](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/valentingol/8fb4f3f78584e085dd7b0cca7e046d1f/raw/torch_pca_pylint.json)](https://github.com/valentingol/torch_pca/actions/workflows/pylint.yaml)
22+
23+
[![Tests](https://github.com/valentingol/torch_pca/actions/workflows/tests.yaml/badge.svg)](https://github.com/valentingol/torch_pca/actions/workflows/tests.yaml)
24+
[![Coverage](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/valentingol/c5a6b5731db93da673f8e258b2669080/raw/torch_pca_tests.json)](https://github.com/valentingol/torch_pca/actions/workflows/tests.yaml)
25+
[![Documentation Status](https://readthedocs.org/projects/torch-pca/badge/?version=latest)](https://torch-pca.readthedocs.io/en/latest/?badge=latest)
26+
27+
## Links
28+
29+
Pypi project: https://pypi.org/project/torch_pca/
30+
31+
Documentation: https://torch-pca.readthedocs.io/en/latest/
2032

2133
## Installation
2234

@@ -31,12 +43,12 @@ Exactly like `sklearn.decomposition.PCA` but it uses PyTorch tensors as input an
3143
```python
3244
from torch_cpa import PCA
3345

34-
# Create like sklearn.decomposition.PCA
35-
pca_model = PCA(n_components=None, whiten=False)
46+
# Create like sklearn.decomposition.PCA, e.g.:
47+
pca_model = PCA(n_components=None, svd_solver='full')
3648

37-
# Use like sklearn.decomposition.PCA
38-
>>> new_X1 = pca_model.fit_transform(X1)
39-
>>> new_X2 = pca_model.transform(X2)
49+
# Use like sklearn.decomposition.PCA, e.g.:
50+
>>> new_train_data = pca_model.fit_transform(train_data)
51+
>>> new_test_data = pca_model.transform(test_data)
4052
>>> print(pca.explained_variance_ratio_)
4153
[0.756, 0.142, 0.062, ...]
4254
```

0 commit comments

Comments
 (0)