
Sage: Creating a Viable Free Open Source Alternative to

Magma, Maple, Mathematica, and MATLAB∗

William Stein†

August 28, 2011

Abstract

Sage (http://www.sagemath.org) is a large free open source software package aimed at
all areas of mathematical computation. Hundreds of people have contributed to the project,
which has steadily grown in popularity since 2005. This paper describes the motivation for
starting Sage and the history of the project.

1 Introduction

The goal of the Sage project is to create a viable free open source alternative to Magma,
MapleTM, Mathematica R©, and MATLAB R©, which are the most popular non-free closed source
mathematical software systems.1 Magma is (by far) the most advanced non-free system for
structured abstract algebraic computation, Mathematica and Maple are popular and highly
developed systems that shine at symbolic manipulation, and MATLAB is the most popular
system for applied numerical mathematics. Together there are over 3,000 employees working at
the companies that produce the Ma’s, which take in over a hundred million dollars of revenue
annually.

A viable alternative to the Ma’s will have the important mathematical features of each Ma,
with comparable speed. It will have 2d and 3d graphics, an interactive notebook-based graph-
ical user interface, and documentation, including books, papers, school and college curriculum
materials, etc.

A viable alternative need not be a drop-in replacement for any of the Ma’s; in particular, it
need not run programs written in the custom languages of those systems. Thus Sage is nothing
like Octave2. Development focuses on implementing function that users demand, rather than
systematically trying to implement every single function of the Ma’s. The culture, architecture,
and general feel of Sage is very different than that of any of the Ma’s.

∗This article will appear in the proceedings of FoCM 2011.
†The work was supported by NSF grants...
1Maple is a trademark of Waterloo Maple Inc. Mathematica is a registered trademark of Wolfram Research

Incorporated. MATLAB is a registered trademark of MathWorks. I will refer to the four systems together as
“Ma” in the rest of this article.

2Octave is an open source alternative to MATLAB, that can run many MATLAB programs.

1

http://www.sagemath.org


In Section 2 we explain some of the motivation for starting the Sage project. In Section 3 we
describe the basic architecture of Sage. Finally, Section 4 sketches some aspects of the history
of the project.

2 Motivation for Starting Sage

Each of the Ma’s cost substantial money, and is hence expensive for me, my collaborators, and
students. The Ma’s are not owned by the community like Sage is, or Wikipedia is, for that
matter.

The Ma’s are closed, which means that the implementation of some algorithms are secret,
in which case you are not allowed to modify or extend them.

“Most of the documentation provided for Mathematica is concerned with explaining what
Mathematica does, not how it does it. You should realize at the outset that while knowing
about the internals of Mathematica may be of intellectual interest, it is usually much less
important in practice than you might at first suppose. Indeed, in almost all practical
uses of Mathematica, issues about how Mathematica works inside turn out to be largely
irrelevant. Particularly in more advanced applications of Mathematica, it may sometimes
seem worthwhile to try to analyze internal algorithms in order to predict which way of doing
a given computation will be the most efficient. [...] But most often the analyses will not be
worthwhile. For the internals of Mathematica are quite complicated, and even given a basic
description of the algorithm used for a particular purpose, it is usually extremely difficult
to reach a reliable conclusion about how the detailed implementation of this algorithm will
actually behave in particular circumstances.”

– Mathematica Documentation, http://reference.wolfram.com/mathematica/tutorial/
WhyYouDoNotUsuallyNeedToKnowAboutInternals.html

Suffice to say, the philosophy espoused in Sage, and indeed by the vast open source software
community, is exactly the opposite.

sage: crt(2, 1, 3, 5) # Chinese Remainder Theorem

11

sage: crt? # ? = documentation and examples

Returns a solution to a Chinese Remainder Theorem problem.

...

sage: crt?? # ?? = source code

def crt (...):

...

g, alpha , beta = XGCD(m, n)

q, r = (b - a). quo_rem(g)

if r != 0:

raise ValueError("No solution to crt problem ...")

return (a + q*alpha*m) % lcm(m, n)

Moreover, by browsing http://hg.sagemath.org/sage-main/, you can see exactly who wrote
or modified any particular line of code in the Sage library, when they did it, and why. Everything
in Sage is open source, and always will be that way.

2

http://reference.wolfram.com/mathematica/tutorial/WhyYouDoNotUsuallyNeedToKnowAboutInternals.html
http://reference.wolfram.com/mathematica/tutorial/WhyYouDoNotUsuallyNeedToKnowAboutInternals.html
http://hg.sagemath.org/sage-main/


“I see open source as Science. If you don’t spread your ideas in the open, if you don’t allow
other people to look at how your ideas work and verify that they work, you are not doing
Science, you are doing Witchcraft. Traditional software development models, where you
keep things inside a company and hide what you are doing, are basically Witchcraft. Open
source is all about the fact that it is open; people can actually look at what you are doing,
and they can improve it, and they can build on top of it. [...] One of my favorite quotes
from history is Newton: ‘If I had seen further, it has been by standing on the shoulders of
giants.’”

– Linus Torvalds, 2011. Listen to it at http://www.youtube.com/watch?v=bt_Y4pSdsHw

The design decisions of the Ma’s are not made openly by the community. In contrast,
important decisions about Sage development are made via open public discussions and voting
that is archived on mailing lists.

Every one of the Ma’s uses a special mathematics-oriented interpreted programming lan-
guage, which locks you into their product, makes writing code outside mathematics more
difficult, and impacts the number of software engineers that are experts at programming in
that language. In contrast, Sage uses the mainstream free open source language Python
http://python.org, which is one of the world’s most popular interpreted programming lan-
guages.

The bug tracking done for three of four of the Ma’s is secret3; thus there is no published
accounting of all known bugs, the status of work on them, and how bugs are resolved. But
the Ma’s do have many bugs; see the release notes of each new version, which lists bugs that
were fixed4. Sage also has numerous bugs, but at least they are all publicly tracked at http:

//trac.sagemath.org, and there is a well-funded sequence of “Bug Days” workshops devoted
entirely to fixing bugs in Sage. Moreover, all discussion about resolving a given bug, including
peer review of solutions, is publicly archived. We note that sadly even some prize winning5 free
open source systems, such as GAP http://www.gap-system.org/, do not have an open bug
tracking system, resulting in people reporting the same bugs over and over again.

None of the Ma’s has an optimizing compiler that converts programs written in their language
to a faster compiled form.6 In contrast, Sage is tightly integrated with Cython7 http://www.

cython.org, which is a Python-to-C/C++ compiler that speeds up code execution and has
support for statically declaring data types (for potentially enormous speedups). For example,
enter the following in a cell of the Sage notebook (e.g., http://sagenb.org):

def python_sum2(n):

s = int(0)

for i in xrange(1, n+1):

s += i*i

return s

And, enter the following in another cell:

3We commend MATLAB for having an open bug tracker, though it requires free registration to view.
4See also http://cybertester.com/ and http://maple.bug-list.org/.
5Jenks Prize, 2008
6MATLAB has a compiler, but “the source code is still interpreted at run-time, and performance of code

should be the same whether run in standalone mode or in MATLAB.”
7The Cython project was co-started by Sage developers, but is now generally popular in the world of Python-

based scientific computing.

3

http://www.youtube.com/watch?v=bt_Y4pSdsHw
http://python.org
http://trac.sagemath.org
http://trac.sagemath.org
http://www.gap-system.org/
http://www.cython.org
http://www.cython.org
http://sagenb.org
http://cybertester.com/
http://maple.bug-list.org/


%cython

def cython_sum2(long n):

cdef long i, s = 0

for i in range(1, n+1):

s += i*i

return s

The second implementation, despite looking nearly identical, is nearly a hundred times faster
than the first one (timings will vary when you try this).

sage: timeit(’python_sum2 (2*10^6) ’)

5 loops , best of 3: 154 ms per loop

sage: timeit(’cython_sum2 (2*10^6) ’)

125 loops , best of 3: 1.76 ms per loop

sage: 154/1.76

87.5

WARNING: For big input the second implementation will overflow and give the wrong answer.
Of course, it is better to choose a different algorithm. In case you can’t remember a closed

form expression for the sum of the first n squares, Sage can deduce it:

sage: var(’k, n’)

sage: factor(sum(k^2, k, 1, n))

1/6*(n + 1)*(2*n + 1)*n

And now our simpler fast implementation is:

def sum2(n):

return n*(2*n+1)*(n+1)/6

Just as above, we can also use the Cython compiler:

%cython

def c_sum2(long n):

return n*(2*n+1)*(n+1)/6

Comparing times, we see that again Cython is faster:

sage: n = 2*10^6

sage: timeit(’sum2(n)’)

625 loops , best of 3: 1.41 microseconds per loop

sage: timeit(’c_sum2(n)’)

625 loops , best of 3: 0.145 microseconds per loop

sage: 1.41/.145

9.72413793103448

In this case, the enhanced speed comes at a cost, in that the answer is wrong when the input is

4



long enough to cause an overflow:

sage: c_sum2 (2*10^6) # WARNING: overflow

-407788678951258603

Cython is very powerful, but to fully benefit from it, one must understand machine level arith-
metic data types, such as long, int, float, etc. At least with Sage you have that option.

3 What is Sage?

The goal of Sage is to compete with the Ma’s, and the intellectual property at our disposal is
the complete range of GPL-compatibly licensed open source software.

Sage is a completely self-contained free open source Python-based distribution of about 100
open source software packages and libraries8 that aims to address all computational areas of pure
and applied mathematics. The download of Sage contains all dependencies, including Python,
required for the normal functioning of Sage. Sage includes a substantial amount of code that
provides a unified Python-based interface to all of these other packages. Sage also includes a
large library of new code written in Python, Cython and C/C++, which implements a range of
algorithms that are not available in any other open source library, and in some cases anywhere
else at all.

An Incomplete Diagram Illustrating Sage and Some of its Components

Much of the work that the hundreds of Sage developers does goes into writing new code
that is included in the core library. They also deal with the never ending task of updating the

8See the list at http://sagemath.org/packages/standard/.

5

http://sagemath.org/packages/standard/


constantly changing packages included in Sage and testing to what extent the new versions work
well together. This involves reporting and sometimes fixing the bugs that result when these
package inevitably do not work together. Moreover, as popular new operating systems versions
are released, developers sometimes port Sage to run on them.

There are Hundreds of Sage Developers all Over the World

4 History

I made the first release of Sage in February 2005, and at the time called it “Software for
Arithmetic Geometry Experimentation.” I was a serious user of, and contributor to, Magma at
the time, and was motivated to start Sage for many of the reasons discussed above. In particular,
I was personally frustrated with the top-down closed development model of Magma, the fact
that several million lines of the source code of Magma are closed source, and the fees that
my colleagues had to pay in order to use the substantial amount of code that I contributed to
Magma. Despite my early naive hope that Magma would be open sourced, this never happened.
So I started Sage with the hope that someday the single most important item of software I use
on a daily basis would be free and open. David Joyner, David Kohel and Joe Wetherell were
also involved in the development of Sage during the first year.

In February 2006, the National Science Foundation funded a 2-day workshop called “Sage
Days 2006” at UC San Diego, which had about 40 participants and speakers from several open
and closed source mathematical software projects. After a year of work on Sage, I was very
surprised by the positive reception to Sage by members of the mathematical research community.

6



What Sage promised was something many mathematicians wanted. Whether or not Sage would
someday deliver on that promise was (and for many still is) an open question.

I had decided when I started Sage that I would make it powerful enough for my research,
with or without the help of anybody else, and was pleasantly surprised at this workshop to find
that other people were interested in helping, and understood the significant shortcomings of
existing open source software, such as GAP and PARI, and the longterm need to move beyond
Magma9. Encouraged, six months later, I ran another Sage Days workshop, which resulted
in numerous talented young graduate students, including David Harvey, David Roe, Robert
Bradshaw, and Robert Miller, getting involved in Sage development. I also learned that there
was much broader interest in such a system, and stopped referring to Sage as being exclu-
sively for “arithmetic geometry”; instead, Sage became “Software for Algebra and Geometry
Experimentation.” Today the acronym is deprecated.

The year 2007 was a major turning point for Sage. Far more people got involved with
development, we had four Sage Days workshops, and prompted by Craig Citro, we instituted
a requirement that all new code must have tests for 100% of the functions touched by that
code, and every modification to Sage must be peer reviewed. Our peer review process is even
more open than in mathematics, in that everything that happens is publicly archived at http:
//trac.sagemath.org. During 2007, I also secured some funding for Sage development from
Microsoft Research, Google, and NSF. Also, another graduate student in cryptography, Martin
Albrecht (from Germany), started contributing to Sage, and presented Sage at the Trophées du
Libre competition in France. Sage won first place in “Scientific Software”, which led to a huge
amount of publicity, including articles in many languages around the world and appearances10

on the front page of http://slashdot.org.
In 2008, I organized 7 Sage Days workshops, and for the first time, several people besides

me made releases of Sage. In 2009, we had 8 more Sage Days workshops, and the underlying
foundations of Sage improved, including development of a powerful coercion architecture. This
coercion model systematically determines what happens when performing operations such as
a + b, when a and b are elements of potentially different rings (or groups, or modules, etc.).

sage: R.<x> = PolynomialRing(ZZ)

sage: f = x + 1/2; f

x + 1/2

sage: parent(f)

Univariate Polynomial Ring in x over Rational Field

We compare this with Magma (V2.17-4), which has a more ad hoc coercion system:

> R<x> := PolynomialRing(IntegerRing ());

> x + 1/2

^

Runtime error in ’+’: Bad argument types

Argument types given: RngUPolElt[RngInt], FldRatElt

Robert Bradshaw and I also added support for beautiful browser-based 3D graphics to Sage,

9This was a community of researchers in number theory, for which the Ma’s besides Magma are far behind.
10For example, http://science.slashdot.org/story/07/12/08/1350258/Open-Source-Sage-Takes-Aim-at-High-End-Math-Software

7

http://trac.sagemath.org
http://trac.sagemath.org
http://slashdot.org
http://science.slashdot.org/story/07/12/08/1350258/Open-Source-Sage-Takes-Aim-at-High-End-Math-Software


which involved writing a 3D graphics library, and adapting the free open source JMOL Java
library (see http://jmol.sourceforge.net/) for rendering molecules to instead plot mathe-
matical objects.

sage: f(x,y) = sin(x - y) * y * cos(x)

sage: plot3d(f, (x,-3,3), (y,-3,3), opacity =.9, color=’red’)

In 2009, development of algebraic combinatorics in Sage picked up substantial momentum,
with the switch of the MuPAD-combinat group to Sage (forming sage-combinat http://wiki.
sagemath.org/combinat), only months before the formerly free system MuPAD R©11 was bought
out by Mathworks (makers of MATLAB).

In 2010, there were 13 Sage Days workshops in many parts of the world, and grant funding
for Sage significantly improved again, including new NSF funding for undergraduate curriculum
development. I also spent much of my programming time during 2010–2011 developing a highly
technical number theory library called psage http://code.google.com/p/purplesage/, which
is currently not included in Sage, but can be easily installed.

For many mathematicians and students, Sage is today the solid, open, and free foundation
on which they can build their research program. It is a community-owned foundation for
computational mathematics.

11MuPAD is a registered trademark of SciFace Software GmbH & Co.

8

http://jmol.sourceforge.net/
http://wiki.sagemath.org/combinat
http://wiki.sagemath.org/combinat
http://code.google.com/p/purplesage/

	Introduction
	Motivation for Starting Sage
	What is Sage?
	History

