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TL;DR

I suggest to deform the conformational space such that the euclidian distances become meaningful in
the deformed space. Computing the distance between two volumes is expensive so I suggest making
use of amortization to decrease its evaluation cost.

What is the Problem?

CryoDRGN maps cryo-EM images to an abstract low-dimensional latent space (the conformational
space). The problem is that distances in this space do not have a valuable meaning. In particular,
points that are far apart in this space can correspond to very similar structures (up to a global rotation).
This means that moving in the conformational space does not necessarily mean deforming the
volume. Movements in the conformational space can represent pure rotations or no deformation at
all. However, we want to be able to interpret distances in the conformational space: we want spread
out points to represent continuous deformations and well separated clusters to represent discrete
conformational changes.

Current Approach

Currently, the only way to interpret the landscape is to sample it, generate the associated volumes and
analyze them by eye.

Suggested Solution

Importantly, this problem does not affect the quality of the reconstruction. The problem only concerns
the interpretability of the conformational landscape, post-reconstruction. I therefore suggest a post-
processing solution to address this interpretability issue. The idea is to (1) learn a meaningful distance
in the latent space and (2) deform this latent space such that euclidian distances can be interpreted in
a meaningful way.

Methods

Distance in Latent Space

The distance between two volumes is defined be the following function:
δ : (V1, V2) 7→ minϕ∈SO(3)∥V1 − ϕ · V2∥2. (1)

V1 and V2 are voxel grids (elements of Rn×n×n). ϕ · V represents a rotated volume. It is crucial to
factor out rotations as the conformational space can represent pure rotations (entanglement problem).

From this, we can define a distance in the latent space. Let’s call V the function that transforms a
latent z into a voxel grid,

V : z ∈ Rd 7→ {Γ(xk, z)}k ∈ Rn×n×n, (2)



where Γ is the hypervolume obtained with cryoDRGN. The distance in the latent space is then defined
by

∆ = δ(V (.), V (.)) : Rd × Rd → R. (3)

Objective Function

Ideally, we would like to have something like

∀z1, z2 ∈ Rd, ∥z1 − z2∥2 ≈ ∆(z1, z2). (4)

Each predicted latent zi will be mapped to a transformed predicted latent z′i ∈ Rd′ . The objective
function we will aim at minimizing is

L({z′i}) =
N∑

i,j=1

(∥z′i − z′j∥2
∆(zi, zj)

− 1

)2

. (5)

over {z′i}.

With a problem formulated like this, two challenges remain:

1. The number of unknowns (z′i) scales linearly with the number of images.

2. The function ∆ is (very) costly to evaluate, and needs to be evaluated a number of times that
grows quadratically with the number of images.

Our Old Friend, Amortization

Amortization on the Number of Unknowns

Instead of looking for the set {z′i}, we will look for a parameterized function

fξ : Rd → Rd
′

(6)

mapping predicted latents to transformed predicted latents z′ = fξ(z).

Amortization of ∆

Instead of evaluating ∆, we will learn an approximation from a small subset (smaller than N ×N ).
We first generate volumes from a subset of the predicted latents Ω = {zi}i={1,...,L}. Hopefully
L ≪ N is enough. We compute ∆(z1, z2) for all pairs in Ω. Finally, we optimize a parameterized
function hψ such that

∀z1, z2 ∈ Ω2, hψ(z1, z2) ≈ ∆(z1, z2). (7)

∆ is a symmetric function, so this symmetry can be implicitly induced in hψ with the right parame-
terization.

Full Objective Function

Given a pretrained function hψ , the objective function we want to minimize is

L(ξ) =
N∑

i,j=1

(
∥fξ(zi)− fξ(zj)∥2

hψ(zi, zj)
− 1

)2

. (8)

This sum contains N × N terms, which is too much for a cryo-EM dataset. However, it can be
minimized with SGD. It is probably not necessary to use all the possible pairs to get a good idea of
the function fξ.

Once we have fξ , we just generate and plot {z′i} = {fξ(zi)} (possibly with a layer of PCA or UMAP
on top).
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Additional Ideas

• This can be seen as a dimension reduction method, similar to the Sammon mapping (https:
//en.wikipedia.org/wiki/Sammon_mapping), the high dimensional space being the
space of voxel grids and the low dimensional one being the transformed latent space. The
difference is that we have an intermediate space (the latent space) and we’re looking for
a function to deform that space, instead of directly optimizing the transformed predicted
latents directly. Since this space is relatively low dimensional, fξ can probably generalize
from a small number of training pairs.

• Instead of measuring the distance between voxel grids, we could measure the distance
between pairwise atoms, if we fit an atomic model on top of generating the voxel grids.
In some cases, the euclidian distance on potential is not the most indicative of chemical
transformations (think about a tiny molecule that can bind to a big molecule in two places
that are far apart). We could also use an optimal transport flow to define the distance on
potentials.

• The method could be used to determine the intrinsic dimension of the movement. For each
dimension d′, we can measure the “volume” of the set of points {z′i}. We gradually increase
d′. When d′ is higher than the intrinsic dimension of the movement, this “volume” should
drop to 0. We need a way to properly measure volumes, but something like: do local PCAs
and check that the last PCA component always has a small variance.

• If less step are needed to learn fξ than to learn hψ, the amortization of ∆ might not be
necessary.

• For large deviations, the euclidian distance on potential is not very meaningful. We could
therefore replace (5) with

L({z′i}) =
N∑

i,j=1

(
1

∆(zi, zj)

(∥z′i − z′j∥2
∆(zi, zj)

− 1

))2

. (9)

• If d = d′, the parameterization of fξ could induce a bias towards the identity function (with
normalization flows for example).
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