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ABSTRACT9

CryoDRGN and other recent deep learning-based cryo-EM reconstruction algorithms are capable of reconstructing complex
distributions of heterogeneous structures. However, the downstream analysis of the resulting density maps typically relies
on manual visualization and inspection, which is impractical for modern deep generative modeling approaches that can
produce large ensembles (> 100) of structures. We present an efficient and automated volume analysis framework for
quantitative analysis of a trained cryodrgn model, including assigning discrete conformational states and visualizing continuous
conformational landscapes. Our framework uses a combination of sketching, clustering, and dimensionality reduction techniques
on the set of reconstructed volumes, which provides a more grounded physical interpretation over cryoDRGN’s latent variable
representation. On a previously published dataset of the ClpXP protease, we newly identified a substrate-engaged state that
was missed in traditional 3D classification. We provide both an automated tool and interactive notebooks that implement this
analysis in the cryoDRGN software.
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1 Introduction11

Single particle cryo-electron microscopy (cryo-EM) is uniquely poised to study complex structural ensembles of large, dynamic12

biomolecular complexes1, and several advanced tools for heterogeneous reconstruction have recently been proposed towards this13

promise2–5. In the cryoDRGN method, heterogeneous reconstruction is framed as unsupervised learning of a deep generative14

model of 3D density maps parameterized by a neural field6 representation of structure2, 7. Central to the cryoDRGN approach is15

learning a generic latent variable model for structural heterogeneity, which has been empirically shown to model both discrete16

and continuous forms of structural variability, for example compositional changes from co-factor binding during ribosome17

assembly2 and large-scale continuous motions of dynein motor protein complexes8. In cryoDRGN’s framework of generative18

modeling, once a model is trained, an arbitrary number of volumes may be reconstructed at sampled values of the latent variable,19

thus tools are needed to comprehensively explore the reconstructed distribution.20

To accommodate the diverse sources of heterogeneity present in cryo-EM data, cryoDRGN possesses a number of interactive21

and automated processing approaches for analyzing cryoDRGN results. Existing approaches have focused on visualization of22

the low-dimensional latent embeddings coupled with user-guided exploration of the volume ensemble2. However, while the23

distribution of latent space embeddings may possess interpretable features reflective of the underlying structural ensemble,24

the objective function of training a cryoDRGN model aims to reconstruct the distribution of the imaged particles without any25

guarantees that their latent space representation is (visually) interpretable. Here, we instead focus our analysis of the learned26

distribution on the high-dimensional output space of volumes.27

Briefly, we first summarize the volume distribution with a k-means-based sketching of the latent space to enable computa-28

tionally tractable analysis. Two types of analyses are then performed on the sketch of volumes: 1) an aggolmerative clustering29

algorithm which produces a small number of summary volumes that can be interpreted as discrete conformation states and30

2) principal component analysis (PCA), where the estimated eigenvectors (or, “eigenvolumes”) define continuous reaction31

coordinates that may be used to interpret the full ensemble of particles. The rationale behind these choices is described in the32

next section.33

Applied on a previously published dataset of the ClpXP protease9, we automatically identified a new substrate-engaged state34

comprising 1,255 particles (0.3% of the dataset) that was both missed in traditional 3D classification and was not immediately35

apparent from visualizing the cryoDRGN latent space. By applying PCA on the volume ensemble, we produced reaction36
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coordinates that provide a more interpretable visualization of the ensemble than cryoDRGN’s latent variable representation. A37

software tool that implements this “landscape analysis” is openly available in cryoDRGN software version 1.0.38

2 Methods39

In this section, we describe the computational pipeline and design choices for analyzing and interpreting a cryoDRGN model40

(Figure 1, top), using the ClpXP protease dataset from Fei et al.9 as an instructive example (Figure 1, bottom).41

2.1 Overview of cryoDRGN outputs42

Given a dataset of single particle cryo-EM images, {X1, ...,XN}, cryoDRGN performs heterogeneous reconstruction by jointly43

training an inference model over images, qξ (z|X), (the encoder) and a generative model over volumes, pθ (V |z), (the decoder).44

Once trained, the model may be used to predict a latent variable representation for each image in the dataset, which we refer to45

as the “latent embedding”:46

zi ∼ qξ (z|Xi) (1)

and generate an associated volume representation:47

Vi ∼ pθ (V |zi) (2)

In practice, we define the latent embedding as the maximum a posteriori estimate of the (Gaussian) posterior qξ (z|Xi),48

which provides a low-dimensional representation of each image, i.e. zi ∈RN , where N = 8 is typical; the volume is rendered on49

a 3D lattice for downstream visualization tools, i.e. Vi ∈ RD×D×D, where D = 128 or D = 256 is typical.50

2.2 Motivation of volume space analysis51

The set of latent embeddings of the dataset {zi} gives a low-dimensional vector representation of the dataset that can be52

visualized in 2-D with dimensionality reduction algorithms such as PCA, t-SNE, or Uniform Manifold Approximate and53

Projection (UMAP)10 (Figure 1A). As shown in Zhong et al.2, the resulting features of the distribution of latent embeddings54

can be reflective of structural heterogeneity, such as clusters that correspond to different compositional states. While this may55

suggest an interpretation of the latent embeddings as an energy landscape, (e.g. where regions of higher/lower particle density56

correspond to low/high energy states), this interpretation is flawed. Namely the layout of the latent space is arbitrary (hindering57

interpretation), distances in latent space are not meaningful (z are passed through a nonlinear decoder), and empty regions58

of latent space do not in general correspond to high energy configurations. Thus, the interpretation of the latent embeddings59

typically requires annotations from user-guided exploration of the volume ensemble. For example, after training a 8-D latent60

variable model on the ClpXP dataset (Section A), we visualized the final latent embeddings with UMAP (Figure 1A). Although61

there are “features” in the UMAP visualization (e.g. regions of higher and lower particle density), their interpretation requires62

manual inspection of volumes to annotate the various regions. Furthermore, the interpretability of UMAP distances is not63

reliable11.64

Our motivation here is to provide an automated and comprehensive analysis approach for the entire ensemble of volumes65

{Vi} to facilitate interpretation of the trained model. However, it is computationally intractable to generate the entire ensemble66

of volumes {Vi} associated with each particle in the dataset due to the computational cost of rendering a volume (seconds per67

volume) and the storage requirement for the voxel arrays (for 105−106 volumes). Existing cryoDRGN analysis approaches68

typically generate tens of volumes from different regions of the latent space followed by manual inspection. However, this69

approach can be time-intensive for the practitioner and prone to missing (rare) states that are not sampled, especially because it70

requires the practitioner to decide a priori the regions worth deeper study.71

2.3 Sketching the volume ensemble72

We first generate a sketch, or a representative subsample, of volumes from the trained cryoDRGN model that will be used for73

the downstream structural landscape analysis. The general objective of sketching a dataset is to generate a subsample such74

that some important properties of the original dataset are preserved. For instance, one can consider naive uniform sampling75

as a method of sketching, where the property preserved is the probability density of the data. However, a major drawback of76

uniform sampling is that rare classes will often not end up in a sample unless a very large sketch size is used. For example, in77

order to capture at least one example of rare substrate-engaged state in ClpXP (see Figure 4), which occurs in 0.3% of the78

samples with a probability of 99%, more than 1,500 samples are needed. See12 for a discussion of various sketching algorithms79

for the computational analysis of single-cell RNA-sequencing datasets.80

Here, we use a k-means clustering algorithm for sketching: Given a desired sketch size k, we perform k-means clustering81

on the set of latent embeddings {zi} (Figure 1B). The latent embedding that is closest to each k-means cluster center is then82
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Figure 1. Overview of the landscape analysis pipeline: We show the general schematic of landscape analysis (top) and its
application to a single particle dataset of ClpXP protease9 (bottom). A. First, a cryoDRGN model is trained, so that a latent
variable representation zi can be generated for each image i in the original dataset. While the latent space representation
describes the heterogeneity in the dataset, []. B. Once trained, an arbitrary number of volumes may be generated from the
resulting model. For downstream analysis of the volume distribution, we sketch the set of latent embeddings to find k
representative volumes (shown as orange points). C. A mask is applied on the sketched volumes to reduce noise from the
background. A user-specified mask can be provided to focus on a subset of the volume; here, a mask covers ClpX, the mobile
region of the complex. D. The sketched volumes are then clustered to characterize discrete conformational states. E. Particles
associated to each cluster can be exported for refinement. F. The set of sketched volumes can be visualized with principal
component analysis (PCA), which produces a linear map WL for estimating low-dimensional volume embeddings vi; the
principal components (PC) indicate high variance modes of continuous motion in the structure and can be used to interpret {vi}.
Cluster assignments from (D) are also plotted (colors). G. A conformational landscape for the full dataset can be visualized by
mapping all particles from their latent representation zi to their PC-embedded volume representation vi. We train a multilayer
perceptron (MLP) φ to learn this mapping because generating volumes for the entire dataset is intractable. Arrows: Clusters
can be inspected for artifacts (e.g. from junk particles); the underlying volumes or image data can be excluded when
re-analyzing the volumes or retraining a cryoDRGN model, respectively.
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Figure 2. Conformational landscape of ClpXP inferred from PCA of the cryoDRGN volume distribution: A.
Structures traversing principal component 1 shows the transition from the recognition to the intermediate complex. B.
Structures traversing principal component 2 shows the dissociation of ClpX. C. A conformational landscape visualization of all
particles mapped to the volume PC space. The methods and motivations for these analyses are described in Section 2.5

used to generate a volume for the volume sketch. Because k-means attempts to minimize the total variance of all clusters, with83

sufficiently large k, most points in the dataset should be relatively close to a point in the sketch. We validate that each each84

sketched latent embedding yields a representative volume for each cluster for a reasonable choice of k, e.g. k = 500,1000. Since85

each cluster of latent embeddings also represents a set of volumes, we measure the volume-space homogeneity by computing86

the pairwise L2 distance of volumes for a randomly sampled cluster (Figure S2). We use a sketch size of k = 500 for all87

downstream analysis of the ClpXP dataset.88

2.4 Masking for feature selection89

Once the volume sketch is generated, we mask out the voxels of the sketched volumes that correspond to the either background90

or a user-defined region prior to performing the downstream clustering and dimensionality reduction analysis (Figure 1C). A91

benefit of working in volume space is that the “features” of the volume vector are voxels in the volume representation. This92

allows us to remove voxels that are known to be irrelevant (by default, the background), which reduces the variation introduced93

by (random or structured) noise in the masked out region. The remaining variance is thus more likely to be meaningful, which is94

especially important since variance is fundamental to both our downstream clustering (Ward linkage minimizes cluster variance,95

see Section 2.6) and dimensionality-reduction (PCA finds the directions of maximum variance) analyses.96

For each of the 500 sketched volumes, we define the region to exclude as the voxels whose density is less than half of the97

maximum density of the volume; the final binary mask applied to all volumes is the union of the masked out region for each98

volume. The user can also define the mask on their own, which is especially useful if there is prior information on part of the99

complex that should be focused on. In the ClpXP example, the ClpX subunit is dynamic, and so that region is manually chosen100

to analyze in our pipeline (Figure 1C). Masking also has the computational benefit of reducing the feature space from 2,097,152101

voxels in the 1283 volume to the 162,210 voxels that are in the mask.102

2.5 Visualizing a conformational landscape103

Taking inspiration from previous work13, we apply principal component analysis (PCA) on the set of masked volumes and104

use the resulting eigenvector decomposition to visualize the entire ensemble of reconstructed density maps (Figure 2). The105

PCA analysis provides two benefits: 1) the resulting eigenvectors (i.e. “eigenvolumes”) produce trajectories along the axes of106

maximum variation which can be used to summarize the major modes of motion (Figure 2A,B); and 2) the top N principal107

components (PCs) produce a low-dimensional volume-space embedding that can be used to visualize the entire cryoDRGN108

ensemble (Figure 2C).109

For the ClpXP protease, traversing the first PC in volume space corresponds to the transition between the ClpXP intermediate110

and recognition complexes (Figure 2A); the second corresponds to dissociation of ClpX (Figure 2B); and the third corresponds111

to appearance of the GFP substrate. Because the PCs form a linear, orthogonal basis, the location of each sketched volume in112
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the PC embedding space can be more easily interpreted (i.e. as the linear combination of the basis vectors). This is in contrast to113

the latent variable representation (shown in Figure S5), where traversals along the PC axes in latent space or UMAP coordinates114

are not guaranteed to provide comprehensive summaries of the volume ensemble, due to the nonlinear nature of the decoder.115

On the ClpXP protease, the top three principal components capture 65% of the variance in the data (Figure S1), making116

even a three-dimensional representation reasonable. The set of volumes in the sketch may be visualized as a scatterplot in the117

volume PC space. For example, Figure 3A shows a scatter plot of PC1 and PC2 for the sketched volumes, and Figure 4A shows118

PC2 and PC3.119

As the PC decomposition is estimated on the 500 volumes in the sketch, we next apply this decomposition to the entire120

dataset of 344,069 volumes in order to visualize the entire conformational landscape of all the imaged particles (shown in121

Figure 2C). Instead of generating all 344,069 volumes, which is computationally intractable, we learn a function φ that maps122

latent space coordinates for each particle i directly to volume embedding space. Specifically, φ takes on the form of a simple123

multilayer perceptron (MLP) network. Having computed the transformation to principal components on the initial 500 sketched124

volumes, we then compute the volumes of an additional sample of 25,000 latent representations zi, 1≤ i≤ 25,000 and map125

those into PCA space vi; these pairs (zi,vi) are used to train the MLP φ (additional methods in Section A). Once trained, the126

volume embedding representation of any point in the original dataset z can be computed as φ(z).127

Finally, linear methods do have limitations for visualization, especially in cases where most of the variance is not contained128

in the top few PCs, or where the linear approximation to the underlying nonlinear motions is inaccurate. In those cases,129

nonlinear methods for visualization can be considered. We show two popular methods for visualization on the ClpXP volume130

sketch in Figure S3, multidimensional scaling (MDS) and UMAP.131

2.6 Identifying conformational states with agglomerative clustering132

We also cluster the volume sketch to summarize the major conformational states of the reconstructed ensemble. We use an133

agglomerative clustering algorithm and allow the user to vary the number of clusters M, the linkage criterion, and the distance134

metric. We note that different choices of the clustering hyperparameters emphasize different priors and definitions of what a135

“cluster” should be. We use agglomerative clustering with the goal that this bottom-up clustering algorithm may be effective at136

identifying outlier states, including rare states (or junk particles), which would “look different” (under the e.g. L2 distance137

metric) than the rest of the ensemble, and thus be agglomerated last. Unlike top-down clustering algorithms such as k-means,138

which first define the differences between clusters, agglomerative clustering does not impose any geometric priors on the shape139

or size of the clusters. On the ClpXP dataset, agglomerative clustering with M = 10 target clusters, a Euclidean distance metric,140

and an “average” linkage criterion, which minimizes the average distance between the two sets when merging clusters, yields141

five well-populated and five sparse clusters (Figure 3). An example of clustering results with M = 20 target clusters is shown in142

Figure S3 and with Ward linkage (which minimizes the variance within each cluster) is shown in Figure S6.143

We compute the centroid of each cluster (i.e. an average of the volumes in the cluster) as a representative structure; these144

summary states can be quickly and efficiently inspected to evaluate the diversity of the dataset (Figure S4). In the case of145

ClpXP, we find that cluster 0 represents the complex with the ClpX hexamer absent. Since we are interested in ClpX variability,146

the volumes from cluster 0 can be excluded to avoid the consideration of this state when re-running landscape analysis (not147

shown) or the underlying particles may be removed from any further cryoDRGN training.148

After inspecting the sparse clusters, we found that cluster 8 reflects the substrate-engaged state of ClpXP (see Figure 4).149

This state was both missed in the original 3D classification of this dataset9 and by expert-guided inspection of the cryoDRGN150

ensemble, yet is biochemically known to be in the sample. Since this cluster represents only 0.3% of the dataset, our focus on151

ensuring the diversity of possible conformations was covered in our sketching step was crucial for its discovery. We combined152

the 1,255 particles of the volumes associated with cluster 8 and performed a homogeneous refinement in RELION to validate153

the presence of this structure (Figure 3C). An atomic structure of the GFP substrate was able to be docked into the resulting154

density map (Figure 3D).155

3 Results156

4 Discussion157

The ability of cryoDRGN to model complex structural distributions has raised new questions on how its underlying deep158

generative model should be interpreted to yield testable structural hypotheses. In particular, the ability of cryoDRGN to159

reconstruct an arbitrary number of structures, rather than a single or discrete set of structures (tens of structures), presents a160

novel challenge since examining each structure Vi of the dataset individually is both computationally and manually intractable.161

Here, we have introduced a “landscape analysis” pipeline that aims to summarize the full diversity of structures in a trained162

cryoDRGN model for the practitioner. The method is implemented as a tool in the cryoDRGN software for automated analysis,163
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Figure 3. Conformational states of ClpXP inferred from clustering the CryoDRGN volume distribution:
Agglomerative clustering (M = 10 clusters) produces five well-populated and five sparse clusters. A. The sketched datapoints
are colored by their assigned cluster and plotted in volume PC space (from Figure 2). B. and C. The number of volumes and
the number of particles for each cluster. Note that some clusters have very few counts, indicating they are outlier groups that
might be artifacts or interesting rare conformations. D. Representative structures (the centroid of the cluster) for the five most
populated clusters. Additional structures are shown in Figure S4. E. The top-down view of the cluster 1 and cluster 2 volumes
from D superimposed, highlighting the conformational change between the ClpXP recognition and intermediate complex.

and we have found this approach to be useful for quickly analyzing models, especially in cases where the latent embeddings are164

visually uninformative.165

This landscape analysis pipeline performs two separate but complementary approaches for summarizing the learned166

distribution: 1) as a small number of discrete conformational states (and their constituent particles for further refinement),167

including rare states of interest or 2) with continuous reaction coordinates inferred from PCA that provide an interpretable168

conformational landscape visualization of the full dataset. The interpretation as discrete or continuous variability, while169

seemingly at odds, work well together. For one, the choice of method can be tailored to specific structural hypotheses170

surrounding the dataset of interest. But more generally, the two interpretations may be complementary when both compositional171

and conformational heterogeneity are present in the dataset, such as in the ClpXP protease, e.g. dissociation of ClpX172

(compositional) and conformational transitions between the intermediate and recognition complexes (conformational). Even173

when there is a conformational continuum, it may be useful to discretize the continuum for summary structures. We emphasize174

that these analyses place different structural assumptions on the ensemble of volumes, and ultimately the choice of interpretation175

is made by the practitioner.176

Unlike PCA-based approaches for reconstruction, such as in Tagare et al.14 and 3D Variability Analysis3, PCA is used177

here to summarize features of a full-rank set of volumes reconstructed by cryoDRGN. While cryoDRGN and other nonlinear178

methods for heterogeneity analysis can produce complex distributions of density maps, the latent representation is not directly179

interpretable due to the nonlinear nature of the mapping from latent space to volumes. Here, by separating reconstruction from180

the downstream volumetric analysis, we can take advantage of both cryoDRGN’s powerful nonlinear representation of 3D181

density maps and established dimensionality reduction techniques to obtain interpretable features.182

The analysis of large sets of vectorized volumes (i.e. high-dimensional vector arrays) is a general problem in large-scale,183

high-dimensional data analysis, and many other algorithms are transferable to this space. For example, this landscape analysis184

framework can be easily modified to use a different sketching algorithm, clustering algorithm, or volume embedding algorithm.185

This approach may also be tailored to analyze the results from other heterogeneous reconstruction methods that generate186

large ensembles of volumes, and may be especially relevant for the growing number of reconstruction methods based on deep187

learning4, 15. Finally, this approach is a purely data-driven approach for analyzing the ensemble of volumes (aside from any188

user-provided masks), and thus will be less biased, but perhaps less informative than other methods that guide the analysis of189

the ensemble based on an atomic model16, 17.190

5 Code Availability191
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Figure 4. Identification of the ClpXP substrate-engaged state: Inspecting the cluster 8 structure from Figure 3 revealed
the ClpXP substrate-engaged state. A. Cluster 8 can be identified on the volume PCA plot when comparing PC2 and PC3,
where this cluster is more separated. B. The representative volume (cluster centroid) for cluster 8. C. Homogeneous refinement
in RELION of the 1,255 particles within this cluster. D. The density map from (C) with the atomic model docked. Although the
GFP substrate is low-resolution, the density of GFP is well aligned with the atomic model.
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A Supplemental Methods229

A.1 cryoDRGN training230

CryoDRGN version 0.3.2 models were trained on 344,069 single-particle images of ClpXP from Fei et al.9 downsampled231

to an image size of 128× 128 (2.71875 Angstroms per pixel), with their corresponding poses assigned from a consensus232

reconstruction in RELION. All reconstructions used an MLP architecture with 3 hidden layers of width for the encoder and233

decoder networks. The latent variable dimension was 8. Training was performed in minibatches of 8 images using the Adam234

optimizer and a learning rate of 0.0001. Training was performed on a single V100 GPU and lasted 9 hours and 22 minutes.235

A.2 Volume mapping236

Given a PCA transformation WL which keeps the top L components, we train a simple MLP network to learn the mapping from237

latent embeddings zi to volume embeddings vi =ViWL to avoid generating Vi for all images in the dataset. A training set of238

(zi,vi) pairs is first generated: 25,000 latent embeddings are sampled from the dataset and used to generate their associated239

volumes through the decoder. Each volume is generated on the fly and embedded to avoid storing 25,000 voxel arrays. The240

MLP is trained using a 3:1 training set to validation set split, where the loss on the held out validation set is monitored to241

prevent overfitting. The MLP is trained for 50 epochs in minibatches of size 64 with the Adam optimizer and a learning rate of242

0.001. The generation of the training set lasted 7 hours and 48 min. Training φ for 50 epochs lasted 4 minutes on a single243

Nvidia V100 GPU.244

B Supplemental Figures245

Figure S1. Explained variance of the top 8 principal components of the set of latent space embeddings and the volume sketch.
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Figure S2. Distribution of pairwise L2 distances for the set of volumes in a sketched cluster for different values of k in
k-means sketching.

Figure S3. Different volume embedding algorithms applied on the sketch of volumes (PCA, MDS, UMAP from left to right).
Different choices in in the number of clusters M (top row M = 10, bottom row M = 20)
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Figure S4. Cluster centroids after agglomerative clustering of the ClpXP volume sketch with M = 10, an average linkage
criterion, and a Euclidean distance metric.

Figure S5. Clusters from Figure 3 visualized in the latent space representation of the dataset (PCA left, UMAP right)
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Figure S6. Agglomerative clustering of the volume sketch with M = 10, a Ward linkage criterion, and a Euclidean distance
metric, visualized in the volume space representation of the dataset.
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