forked from Lifoof/MoGCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoder_model.py
103 lines (92 loc) · 4.26 KB
/
autoencoder_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2021/8/7 14:01
# @Author : Li Xiao
# @File : autoencoder_model.py
import torch
from torch import nn
from matplotlib import pyplot as plt
class MMAE(nn.Module):
def __init__(self, in_feas_dim, latent_dim, a=0.4, b=0.3, c=0.3):
'''
:param in_feas_dim: a list, input dims of omics data
:param latent_dim: dim of latent layer
:param a: weight of omics data type 1
:param b: weight of omics data type 2
:param c: weight of omics data type 3
'''
super(MMAE, self).__init__()
self.a = a
self.b = b
self.c = c
self.in_feas = in_feas_dim
self.latent = latent_dim
#encoders, multi channel input
self.encoder_omics_1 = nn.Sequential(
nn.Linear(self.in_feas[0], self.latent),
nn.BatchNorm1d(self.latent),
nn.Sigmoid()
)
self.encoder_omics_2 = nn.Sequential(
nn.Linear(self.in_feas[1], self.latent),
nn.BatchNorm1d(self.latent),
nn.Sigmoid()
)
self.encoder_omics_3 = nn.Sequential(
nn.Linear(self.in_feas[2], self.latent),
nn.BatchNorm1d(self.latent),
nn.Sigmoid()
)
#decoders
self.decoder_omics_1 = nn.Sequential(nn.Linear(self.latent, self.in_feas[0]))
self.decoder_omics_2 = nn.Sequential(nn.Linear(self.latent, self.in_feas[1]))
self.decoder_omics_3 = nn.Sequential(nn.Linear(self.latent, self.in_feas[2]))
#Variable initialization
for name, param in MMAE.named_parameters(self):
if 'weight' in name:
torch.nn.init.normal_(param, mean=0, std=0.1)
if 'bias' in name:
torch.nn.init.constant_(param, val=0)
def forward(self, omics_1, omics_2, omics_3):
'''
:param omics_1: omics data 1
:param omics_2: omics data 2
:param omics_3: omics data 3
'''
encoded_omics_1 = self.encoder_omics_1(omics_1)
encoded_omics_2 = self.encoder_omics_2(omics_2)
encoded_omics_3 = self.encoder_omics_3(omics_3)
latent_data = torch.mul(encoded_omics_1, self.a) + torch.mul(encoded_omics_2, self.b) + torch.mul(encoded_omics_3, self.c)
decoded_omics_1 = self.decoder_omics_1(latent_data)
decoded_omics_2 = self.decoder_omics_2(latent_data)
decoded_omics_3 = self.decoder_omics_3(latent_data)
return latent_data, decoded_omics_1, decoded_omics_2, decoded_omics_3
def train_MMAE(self, train_loader, learning_rate=0.001, device=torch.device('cpu'), epochs=100):
optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate)
loss_fn = nn.MSELoss()
loss_ls = []
for epoch in range(epochs):
train_loss_sum = 0.0 #Record the loss of each epoch
for (x,y) in train_loader:
omics_1 = x[:, :self.in_feas[0]]
omics_2 = x[:, self.in_feas[0]:self.in_feas[0]+self.in_feas[1]]
omics_3 = x[:, self.in_feas[0]+self.in_feas[1]:self.in_feas[0]+self.in_feas[1]+self.in_feas[2]]
omics_1 = omics_1.to(device)
omics_2 = omics_2.to(device)
omics_3 = omics_3.to(device)
latent_data, decoded_omics_1, decoded_omics_2, decoded_omics_3 = self.forward(omics_1, omics_2, omics_3)
loss = self.a*loss_fn(decoded_omics_1, omics_1)+ self.b*loss_fn(decoded_omics_2, omics_2) + self.c*loss_fn(decoded_omics_3, omics_3)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss_sum += loss.sum().item()
loss_ls.append(train_loss_sum)
print('epoch: %d | loss: %.4f' % (epoch + 1, train_loss_sum))
#save the model every 10 epochs, used for feature extraction
if (epoch+1) % 10 ==0:
torch.save(self, 'model/AE/model_{}.pkl'.format(epoch+1))
#draw the training loss curve
plt.plot([i + 1 for i in range(epochs)], loss_ls)
plt.xlabel('epochs')
plt.ylabel('loss')
plt.savefig('result/AE_train_loss.png')