forked from Lifoof/MoGCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSNF.py
61 lines (52 loc) · 3.42 KB
/
SNF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2021/8/8 14:01
# @Author : Li Xiao
# @File : SNF.py
import snf
import pandas as pd
import numpy as np
import argparse
import seaborn as sns
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path', '-p', type=str, nargs=3, required=True,
help='Location of input files, must be 3 files')
parser.add_argument('--metric', '-m', type=str, choices=['braycurtis', 'canberra', 'chebyshev', 'cityblock',
'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski',
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean',
'sokalmichener', 'sokalsneath', 'sqeuclidean', 'wminkowski', 'yule'], default='sqeuclidean',
help='Distance metric to compute. Must be one of available metrics in :py:func scipy.spatial.distance.pdist.')
parser.add_argument('--K', '-k', type=int, default=20,
help='(0, N) int, number of neighbors to consider when creating affinity matrix. See Notes of :py:func snf.compute.affinity_matrix for more details. Default: 20.')
parser.add_argument('--mu', '-mu', type=int, default=0.5,
help='(0, 1) float, Normalization factor to scale similarity kernel when constructing affinity matrix. See Notes of :py:func snf.compute.affinity_matrix for more details. Default: 0.5.')
args = parser.parse_args()
print('Load data files...')
omics_data_1 = pd.read_csv(args.path[0], header=0, index_col=None)
omics_data_2 = pd.read_csv(args.path[1], header=0, index_col=None)
omics_data_3 = pd.read_csv(args.path[2], header=0, index_col=None)
print(omics_data_1.shape, omics_data_2.shape, omics_data_3.shape)
if omics_data_1.shape[0] != omics_data_2.shape[0] or omics_data_1.shape[0] != omics_data_3.shape[0]:
print('Input files must have same samples.')
exit(1)
omics_data_1.rename(columns={omics_data_1.columns.tolist()[0]: 'Sample'}, inplace=True)
omics_data_2.rename(columns={omics_data_2.columns.tolist()[0]: 'Sample'}, inplace=True)
omics_data_3.rename(columns={omics_data_3.columns.tolist()[0]: 'Sample'}, inplace=True)
# align samples of different data
omics_data_1.sort_values(by='Sample', ascending=True, inplace=True)
omics_data_2.sort_values(by='Sample', ascending=True, inplace=True)
omics_data_3.sort_values(by='Sample', ascending=True, inplace=True)
print('Start similarity network fusion...')
affinity_nets = snf.make_affinity([omics_data_1.iloc[:, 1:].values.astype(np.float), omics_data_2.iloc[:, 1:].values.astype(np.float), omics_data_3.iloc[:, 1:].values.astype(np.float)],
metric=args.metric, K=args.K, mu=args.mu)
fused_net =snf.snf(affinity_nets, K=args.K)
print('Save fused adjacency matrix...')
fused_df = pd.DataFrame(fused_net)
fused_df.columns = omics_data_1['Sample'].tolist()
fused_df.index = omics_data_1['Sample'].tolist()
fused_df.to_csv('result/SNF_fused_matrix.csv', header=True, index=True)
np.fill_diagonal(fused_df.values, 0)
fig = sns.clustermap(fused_df.iloc[:, :], cmap='vlag', figsize=(8,8),)
fig.savefig('result/SNF_fused_clustermap.png', dpi=300)
print('Success! Results can be seen in result file')