forked from Lifoof/MoGCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGCN_run.py
218 lines (185 loc) · 9.25 KB
/
GCN_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2021/8/8 16:43
# @Author : Li Xiao
# @File : GCN_run.py
import numpy as np
import pandas as pd
import argparse
import glob
import os
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import f1_score
import torch
import torch.nn.functional as F
from gcn_model import GCN
from utils import load_data
from utils import accuracy
def setup_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
def train(epoch, optimizer, features, adj, labels, idx_train):
'''
:param epoch: training epochs
:param optimizer: training optimizer, Adam optimizer
:param features: the omics features
:param adj: the laplace adjacency matrix
:param labels: sample labels
:param idx_train: the index of trained samples
'''
labels.to(device)
GCN_model.train()
optimizer.zero_grad()
output = GCN_model(features, adj)
loss_train = F.cross_entropy(output[idx_train], labels[idx_train])
acc_train = accuracy(output[idx_train], labels[idx_train])
loss_train.backward()
optimizer.step()
if (epoch+1) % 10 ==0:
print('Epoch: %.2f | loss train: %.4f | acc train: %.4f' %(epoch+1, loss_train.item(), acc_train.item()))
return loss_train.data.item()
def test(features, adj, labels, idx_test):
'''
:param features: the omics features
:param adj: the laplace adjacency matrix
:param labels: sample labels
:param idx_test: the index of tested samples
'''
GCN_model.eval()
output = GCN_model(features, adj)
loss_test = F.cross_entropy(output[idx_test], labels[idx_test])
#calculate the accuracy
acc_test = accuracy(output[idx_test], labels[idx_test])
#output is the one-hot label
ot = output[idx_test].detach().cpu().numpy()
#change one-hot label to digit label
ot = np.argmax(ot, axis=1)
#original label
lb = labels[idx_test].detach().cpu().numpy()
print('predict label: ', ot)
print('original label: ', lb)
#calculate the f1 score
f = f1_score(ot, lb, average='weighted')
print("Test set results:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))
#return accuracy and f1 score
return acc_test.item(), f
def predict(features, adj, sample, idx):
'''
:param features: the omics features
:param adj: the laplace adjacency matrix
:param sample: all sample names
:param idx: the index of predict samples
:return:
'''
GCN_model.eval()
output = GCN_model(features, adj)
predict_label = output.detach().cpu().numpy()
predict_label = np.argmax(predict_label, axis=1).tolist()
#print(predict_label)
res_data = pd.DataFrame({'Sample':sample, 'predict_label':predict_label})
res_data = res_data.iloc[idx,:]
#print(res_data)
res_data.to_csv('result/GCN_predicted_data.csv', header=True, index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--featuredata', '-fd', type=str, required=True, help='The vector feature file.')
parser.add_argument('--adjdata', '-ad', type=str, required=True, help='The adjacency matrix file.')
parser.add_argument('--labeldata', '-ld', type=str, required=True, help='The sample label file.')
parser.add_argument('--testsample', '-ts', type=str, help='Test sample names file.')
parser.add_argument('--mode', '-m', type=int, choices=[0,1], default=0,
help='mode 0: 10-fold cross validation; mode 1: train and test a model.')
parser.add_argument('--seed', '-s', type=int, default=0, help='Random seed, default=0.')
parser.add_argument('--device', '-d', type=str, choices=['cpu', 'gpu'], default='cpu',
help='Training on cpu or gpu, default: cpu.')
parser.add_argument('--epochs', '-e', type=int, default=150, help='Training epochs, default: 150.')
parser.add_argument('--learningrate', '-lr', type=float, default=0.001, help='Learning rate, default: 0.001.')
parser.add_argument('--weight_decay', '-w', type=float, default=0.01,
help='Weight decay (L2 loss on parameters), methods to avoid overfitting, default: 0.01')
parser.add_argument('--hidden', '-hd',type=int, default=64, help='Hidden layer dimension, default: 64.')
parser.add_argument('--dropout', '-dp', type=float, default=0.5, help='Dropout rate, methods to avoid overfitting, default: 0.5.')
parser.add_argument('--threshold', '-t', type=float, default=0.005, help='Threshold to filter edges, default: 0.005')
parser.add_argument('--nclass', '-nc', type=int, default=4, help='Number of classes, default: 4')
parser.add_argument('--patience', '-p', type=int, default=20, help='Patience')
args = parser.parse_args()
# Check whether GPUs are available
device = torch.device('cpu')
if args.device == 'gpu':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# set random seed
setup_seed(args.seed)
# load input files
adj, data, label = load_data(args.adjdata, args.featuredata, args.labeldata, args.threshold)
# change dataframe to Tensor
adj = torch.tensor(adj, dtype=torch.float, device=device)
features = torch.tensor(data.iloc[:, 1:].values, dtype=torch.float, device=device)
labels = torch.tensor(label.iloc[:, 1].values, dtype=torch.long, device=device)
print('Begin training model...')
# 10-fold cross validation
if args.mode == 0:
skf = StratifiedKFold(n_splits=10, shuffle=True)
acc_res, f1_res = [], [] #record accuracy and f1 score
# split train and test data
for idx_train, idx_test in skf.split(data.iloc[:, 1:], label.iloc[:, 1]):
# initialize a model
GCN_model = GCN(n_in=features.shape[1], n_hid=args.hidden, n_out=args.nclass, dropout=args.dropout)
GCN_model.to(device)
# define the optimizer
optimizer = torch.optim.Adam(GCN_model.parameters(), lr=args.learningrate, weight_decay=args.weight_decay)
idx_train, idx_test= torch.tensor(idx_train, dtype=torch.long, device=device), torch.tensor(idx_test, dtype=torch.long, device=device)
for epoch in range(args.epochs):
train(epoch, optimizer, features, adj, labels, idx_train)
# calculate the accuracy and f1 score
ac, f1= test(features, adj, labels, idx_test)
acc_res.append(ac)
f1_res.append(f1)
print('10-fold Acc(%.4f, %.4f) F1(%.4f, %.4f)' % (np.mean(acc_res), np.std(acc_res), np.mean(f1_res), np.std(f1_res)))
#predict(features, adj, data['Sample'].tolist(), data.index.tolist())
elif args.mode == 1:
# load test samples
test_sample_df = pd.read_csv(args.testsample, header=0, index_col=None)
test_sample = test_sample_df.iloc[:, 0].tolist()
all_sample = data['Sample'].tolist()
train_sample = list(set(all_sample)-set(test_sample))
#get index of train samples and test samples
train_idx = data[data['Sample'].isin(train_sample)].index.tolist()
test_idx = data[data['Sample'].isin(test_sample)].index.tolist()
GCN_model = GCN(n_in=features.shape[1], n_hid=args.hidden, n_out=args.nclass, dropout=args.dropout)
GCN_model.to(device)
optimizer = torch.optim.Adam(GCN_model.parameters(), lr=args.learningrate, weight_decay=args.weight_decay)
idx_train, idx_test = torch.tensor(train_idx, dtype=torch.long, device=device), torch.tensor(test_idx, dtype=torch.long, device=device)
'''
save a best model (with the minimum loss value)
if the loss didn't decrease in N epochs,stop the train process.
N can be set by args.patience
'''
loss_values = [] #record the loss value of each epoch
# record the times with no loss decrease, record the best epoch
bad_counter, best_epoch = 0, 0
best = 1000 #record the lowest loss value
for epoch in range(args.epochs):
loss_values.append(train(epoch, optimizer, features, adj, labels, idx_train))
if loss_values[-1] < best:
best = loss_values[-1]
best_epoch = epoch
bad_counter = 0
else:
bad_counter += 1 #In this epoch, the loss value didn't decrease
if bad_counter == args.patience:
break
#save model of this epoch
torch.save(GCN_model.state_dict(), 'model/GCN/{}.pkl'.format(epoch))
#reserve the best model, delete other models
files = glob.glob('model/GCN/*.pkl')
for file in files:
name = file.split('\\')[1]
epoch_nb = int(name.split('.')[0])
#print(file, name, epoch_nb)
if epoch_nb != best_epoch:
os.remove(file)
print('Training finished.')
print('The best epoch model is ',best_epoch)
GCN_model.load_state_dict(torch.load('model/GCN/{}.pkl'.format(best_epoch)))
predict(features, adj, all_sample, test_idx)
print('Finished!')