-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaster_rcnn_convnext_fpn_1x_coco_freeat_all.py
134 lines (114 loc) · 3.78 KB
/
faster_rcnn_convnext_fpn_1x_coco_freeat_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
_base_ = [
'../configs/_base_/models/faster_rcnn_r50_fpn.py',
'../configs/_base_/datasets/coco_detection.py',
'../configs/_base_/schedules/schedule_1x.py', '../configs/_base_/default_runtime.py'
]
checkpoint_at = "/home/lixiao/ssd/workdir/oddefense/convnext_tiny_mmcls-linf-eps-4-advan.pth"
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
model = dict(
backbone=dict(
_delete_ = True,
type='mmcls.ConvNeXt',
arch='tiny',
out_indices=[0, 1, 2, 3],
drop_path_rate=0.0,
frozen_stages=1,
layer_scale_init_value=1.0,
gap_before_final_norm=False,
linear_pw_conv=True,
init_cfg=dict(type='Pretrained', checkpoint=checkpoint_at)),
neck=dict(
_delete_ = True,
type='FPN',
in_channels=[96, 192, 384, 768],
out_channels=256,
num_outs=5),
train_cfg=dict(rcnn=dict(clip=6))
)
dataset_type = 'CocoDataset'
data_root = '/home/share/datasets/coco/'
work_dir = "/home/lixiao/ssd/workdir/oddefense/frcnn/coco_faster_convnext_freeat_all"
# adversarial trainging and eval config
free_m = 4
times = 2
# full version
adv_cfg = dict(
adv_flag=True,
adv_type="all", # assert in ["all", "mtd", "cwa", "ours"]
free_m=free_m,
epsilon=4)
test_adv_cfg = dict(
adv_flag=True,
adv_type="cls", # assert in ["cls", "reg", "cwa", "dag", "ours"]
step_size=1,
epsilon=4,
num_steps=10,
)
evaluation = dict(interval=1, metric='bbox', save_best='bbox_mAP')
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=int(500/free_m),
warmup_ratio=0.001,
step=[times*10//free_m])
runner = dict(type='AdvEpochBasedRunner', max_epochs=times*12//free_m)
optimizer_config = dict(_delete_=True,
type='AdvOptimizerHook',
grad_clip=dict(max_norm=100, norm_type=2)) # ignore previous setting
optimizer = dict(
_delete_ = True,
type='AdamW',
lr=0.0001,
betas=(0.9, 0.999),
weight_decay=0.05,
paramwise_cfg=dict(
custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}
)
)
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
log_config = dict(
interval=200,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
auto_scale_lr = dict(enable=False, base_batch_size=16)