-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplc.h
284 lines (249 loc) · 9.48 KB
/
plc.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*
* plc.h
*
* Created: 11.1.2017 9:34:45
* Author: Kremmen
* Simple logic controller
* For performance reasons no runtime checking is done so configure with care!
*/
// Various "relays" - pulse, delay, set/reset etc
// This library simulates the elements of a PLC ladder diagram
// There is no user interface, the user must specify the "ladder" in the main program
// by creating all the components and then connecting them together
// using bit and variable numbers (indexes) in the component call arguments.
#ifndef _PLC_h
#define _PLC_h
#include "arduino.h"
#include "plcconfig.h"
enum lState {state_OFF=0, state_ON, state_TIMING}; // the internal state of some components
enum logicFunction {AND, NAND, OR, NOR, XOR}; // functions the Logic2 component knows how to do
enum numericFunction {PLUS, MINUS, MUL, DIV, MOD}; // functions the Calc2 component knows how to do
enum compareOp {LT, LE, EQ, GE, GT}; // functions the numeric compare knows how to do
void tISR(); // Timer 1 interrupt routine declaration
bool Bit(logicBit bit); // Bit interrogation
void setBit( logicBit bit, bool state ); // Bit set/reset routine
int16_t Int(uint8_t intIndex); // Integer interrogation routine
void setInt( uint8_t intIndex, int16_t Value ); // Integer set routine
void listBits(); // Debug help to list bit space (as hex so you need to decode that in your head)
void listTimers(); // Debug help to list timers
class ComponentList; // Advance declaration of Component iterator class
// Base class of all ladder logic components.
// Every real component is derived from this class
// Do NOT attempt to create instances of this class
class Component {
friend class ComponentList;
public:
Component(logicBit inPut, logicBit outPut);
protected:
logicBit inBit, outBit;
virtual void execute();
lState state;
};
// Not: Inverts the input bit.
class Not: public Component {
public:
Not(logicBit inPut, logicBit outPut):Component(inPut,outPut){};
private:
void execute() { setBit( outBit, !Bit(inBit) ); };
};
// Logic2: A logical function of 2 inputs (outPut = inPut1 <lFun> inPut2)
// You define the logical operation (function) to perform in the call argument
// The argument can be one of AND, NAND, OR, NOR, XOR
class Logic2: public Component {
public:
Logic2(logicBit inPut1, logicBit inPut2, logicBit outPut, logicFunction func);
private:
logicBit inBit2;
logicFunction lFun;
void execute();
};
// Calc2: A numeric calculation of 2 inputs (outPut = inPut1 <nFun> inPut2)
// You define the numeric function in the call argument
// It can be one of PLUS, MINUS, MUL, DIUV, MOD (modulo)
// The functions saturate either to zero (0) or UINT16_MAX (65535).
// The result cannot be negative!
class Calc2: public Component {
public:
Calc2(numeric inPut1, numeric inPut2, numeric outPut, numericFunction func);
private:
numeric inBit2;
numericFunction nFun;
void execute();
};
// Bistable: (Set/Reset latch). InPut = SET, InPut2 = RESET. Set has priority
class Bistable: public Component {
public:
Bistable(logicBit inPut1, logicBit inPut2, logicBit outPut);
private:
logicBit inBit2;
void execute();
};
// Astable: An oscillator producing a "clock" signal with configurable duty cycle
// Time 1 is "ON" time, time 2 is "OFF" time
// inPut is ENABLE, when '1' the astable will go, when '0' it will be "OFF"
// Enabling the astable will start counting from beginning, disabling will reset all timers
// The time values are constants given in Timer1 cycles.
class Astable: public Component {
public:
Astable(logicBit inPut, logicBit outPut, uint32_t Time1, uint32_t Time2);
private:
uint32_t onTime, offTime;
uint8_t timerIndex;
bool prevInput;
void execute();
};
// Monostable: Timed pulse on rising edge of input. Time is a constant
// Output completes cycle even if input goes low earlier
class Monostable: public Component {
public:
Monostable(logicBit trigger, logicBit outPut, uint32_t pulseTime);
private:
uint32_t setTime;
uint8_t timerIndex;
bool prevInput;
void execute();
};
// VMonostable: Timed pulse on rising edge of input. Time is a variable
// Output completes cycle even if input goes low earlier
class VMonostable: public Component {
public:
VMonostable(logicBit trigger, logicBit outPut, numeric pulseTimeIndex);
private:
uint8_t setTimeIndex;
uint8_t timerIndex;
bool prevInput;
void execute();
};
// DnCounter: Down counter. Counts clock edges down from the initial value
// When the counter reaches 0, terminal count goes true.
// Reset input will clear Terminal count and set the counter to the initial value,
// The counter will not count while Reset is asserted
class DnCounter: public Component {
public:
DnCounter(logicBit clock, logicBit reset, logicBit outPut, uint16_t initCount);
private:
logicBit inBit2;
uint8_t initialCount;
uint16_t count;
bool prevInput;
void execute();
};
// UpCounter: Up counter. Counts positive clock edges from 0 upwards.
// The current count is kept in the output numeric variable.
// Reset will immediately set the count to 0 regardless of the state of the trigger
// While reset is asserted the counter will not count.
// The count will saturate at UINT16_MAX, i.e. 65535.
class UpCounter: public Component {
public:
UpCounter(logicBit clock, logicBit reset, numeric outPut);
private:
logicBit inBit2;
numeric countIndex;
bool prevInput;
void execute();
};
// Delay: a constant length pulse delayed by a constant time from the trigger.
// The timing constants are 32 bit unsigned integers.
// Delay is triggered on the rising edge of the inPut signal.
// If input goes low before completion, the pulse is completed regardless.
// InPut2 is RESET (active high) and causes immediate reset of the component to initial state.
class Delay: public Component {
public:
Delay(logicBit trigger, logicBit reset, logicBit outPut, uint32_t delayTime, uint32_t trigTime);
private:
logicBit inBit2;
uint32_t setTime_d;
uint32_t setTime_t;
uint8_t timerIndex;
bool prevInput;
void execute();
};
// VDelay: Variable delay. Works as Delay, but the time values are program variables (referenced by the index)
// The timing variables are 16 bit unsigned so maximum times are 65535 clock counts.
class VDelay: public Component {
public:
VDelay(logicBit trigger, logicBit reset, logicBit outPut, numeric delayTimeIndex, numeric trigTimeIndex);
private:
logicBit inBit2;
uint8_t setTime_dIndex;
uint8_t setTime_tIndex;
uint8_t timerIndex;
bool prevInput;
void execute();
};
// BitMux2_1: A 2 to 1 selector. Selects one of the input bits to output based on the state of the selector
class BitMux2_1: public Component {
public:
BitMux2_1(logicBit inPut1, logicBit inPut2, logicBit selector0, logicBit outPut);
private:
logicBit inBit2;
logicBit sel0;
void execute();
};
// BitMux4_1: A 4 to 1 selector. Works the same as 2_1, only this one has 4 inputs and 2 selectors
class BitMux4_1: public Component {
public:
BitMux4_1(logicBit inPut1, logicBit inPut2, logicBit inPut3, logicBit inPut4, logicBit selector0, logicBit selector1, logicBit outPut);
private:
logicBit inBit2, inBit3, inBit4;
logicBit sel0, sel1;
void execute();
};
// IntMux2_1: Integer (numeric) 2 to 1 selector. Works the same as the bit components, but this one has numeric inputs (indexes to the numeric variable memory)
class IntMux2_1: public Component {
public:
IntMux2_1(numeric inPut1, numeric inPut2, logicBit selector0, numeric outPut);
private:
numeric val0Index, val1Index;
void execute();
};
// IntMux4_1: Integer 4 to 1 selector. Works the same as above but for 4 inputs and 2 selectors.
class IntMux4_1: public Component {
public:
IntMux4_1(numeric inPut1, numeric inPut2, numeric inPut3, numeric inPut4, logicBit selector0, logicBit selector1, numeric outPut);
private:
numeric val0Index, val1Index, val2Index, val3Index;
logicBit sel0, sel1;
void execute();
};
// AnalogIn: This function will read an analog channel and store the result in a numeric variable.
// The conversion is done as follows: numeric = analog * multiplier + offset
// Both multiplier and offset are floating point numbers, but the end result is stored in an unsigned integer.
// Take care when defining multiplier and offset - no sanity checks are made!
// NOTE!: The analog channel number must be 0...5. DO NOT USE ARDUINO A0...A5. THEY MAP INCORRECTLY HERE!
class AnalogIn: public Component {
public:
AnalogIn(uint8_t analogChannel, numeric outPut, float offset, float multiplier);
private:
int32_t offs;
int32_t mul;
void execute();
};
// CompareNumeric: Compares 2 numeric values and sets the output bit true or false depending on result
// The compare operation is defined as outPut = inPut1 <OPERATION> inPut2
// where <OPERATION> is one of:
// LT (less than), LE (less or equal), EQ (exactly equal), GE (greater or equal), GT (greater than)
class CompareNumeric: public Component {
public:
CompareNumeric(numeric inPut1, numeric inPut2, logicBit outPut, compareOp cmp);
private:
numeric inNum2;
compareOp comp;
void execute();
};
// ComponentList: Internal bookkeeping component to facilitate executing the ladder logic.
// One instance is created automatically (named CList).
// In Arduino setup() You MUST call CList.begin(); before creating any new Components
// In Arduino loop() you execute the ladder logic by including the instruction CList.execute();
// This will iterate through all declared components and execute each one once per loop()
class ComponentList {
public:
void begin();
bool add( Component *component );
void execute();
private:
uint8_t index;
Component *list[MAXCOMPONENTS];
};
extern ComponentList CList;
#endif