-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmultiple_trials.py
53 lines (41 loc) · 1.52 KB
/
multiple_trials.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from term_grouping import *
from collections import Counter
import time
import numpy as np
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-s','--savepath',type=str,default=None,help='Path to save data')
args = parser.parse_args()
return args
def many_trials(filename, commutativity_type, numtrials):
H = parseHamiltonian(filename)
ops = [term[1] for term in H]
Nq = max([int(op[-1][1:]) for op in ops]) + 1
print('--------------')
print(filename)
results = []
runtimes = []
for i in range(numtrials):
start_time = time.time()
cliques = genMeasureCircuit(H, Nq, commutativity_type)
end_time = time.time()
results += [len(cliques)]
runtimes += [end_time - start_time]
return Counter(results), runtimes
def main():
args = parse_args()
Hfiles = ['hamiltonians/H2_6-31g_{}_0.7_AS4.txt'.format(e) for e in ['JW','BK','BKSF','BKT','PC']]
results = []
for f in Hfiles:
for comm_type, comm_str in zip([QWCCommutativity, FullCommutativity],['QWC','FULL']):
ret, times = many_trials(f, comm_type, 100)
results += [(f,comm_str,ret,times)]
print('\n\n--------------')
print('All trials finished')
with open(args.savepath, 'w') as savefile:
for r in results:
print(r[0],r[1],r[2],'{:.3f}'.format(np.mean(r[3])))
savefile.write('{0} {1} {2} {3:.3f}\n'.format(r[0],r[1],r[2],np.mean(r[3])))
if __name__ == '__main__':
main()