forked from presidio-oss/specif-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution_api.py
563 lines (521 loc) · 22.7 KB
/
solution_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import json
from flask import abort, request, g, Blueprint
from marshmallow import ValidationError
from decorators.require_access_token import require_access_code
from langchain_aws.retrievers import AmazonKnowledgeBasesRetriever
from config.exceptions import CustomAppException
from config.logging_config import logger
from utils.common_utils import render_template, get_template_env
from llm.llm_service import LLMService
from llm.prompts import (
p_process_flow_chart,
p_add_business_process,
p_update_business_process,
p_update_user_story,
p_add_task,
p_update_task,
)
from schemas.schemas import (
create_process_flow_chart_schema,
)
from config.executor import ExecutorConfig
import concurrent.futures
solution_api = Blueprint('solution_api', __name__)
jinja_template_env = get_template_env()
llm_service = LLMService() # Singleton instance of LLMService
@solution_api.route("/api/solutions/flowchart", methods=["POST"])
@require_access_code()
def create_process_flow_chart():
logger.info(f"Request {g.request_id}: Entered <create_process_flow_chart>")
try:
data = create_process_flow_chart_schema.load(request.get_json())
process_flow_template = render_template(p_process_flow_chart)
BRDS = "\n".join(data["selectedBRDs"])
PRDS = "\n".join(data["selectedPRDs"])
process_flow_req = process_flow_template.render(title=data["title"], description=data["description"], BRDS=BRDS, PRDS=PRDS,)
process_flow_description = llm_service.call_llm(process_flow_req)
parsed_res = json.dumps(process_flow_description)
except ValidationError as err:
logger.error(f"Request {g.request_id}: Payload validation failed: {err.messages}")
raise CustomAppException("Payload validation failed.", status_code=400) from err
except json.JSONDecodeError as exc:
logger.error(f"Request {g.request_id}: Failed to parse LLM response")
raise CustomAppException(
"Invalid JSON format. Please try again.",
status_code=500,
payload={"features": process_flow_description},
) from exc
flow_chart_data = parsed_res
logger.info(f"Request {g.request_id}: Exited <create_process_flow_chart>")
return flow_chart_data
# Create solutions without yaml
@solution_api.route("/api/solutions/create", methods=["POST"])
@require_access_code()
def create_solutions():
logger.info(f"Request {g.request_id}: Entered <create_solutions>")
data = request.get_json()
final_llm_response_dict = {}
errors = []
templates = []
def get_llm_response(template_path):
logger.info(f"Request {g.request_id}: Fetching LLM response for template: {template_path}")
template = jinja_template_env.get_template(template_path)
template = template.render(name=data["name"], description=data["description"])
try:
llm_response = llm_service.call_llm(template)
logger.info(f"Request {g.request_id}: Successfully received LLM response for template: {template_path}")
return json.loads(llm_response)
except json.JSONDecodeError:
logger.error(f"Request {g.request_id}: Failed to parse LLM response for template: {template_path}")
abort(500, description="Invalid JSON format. Please try again.")
if data["createReqt"]:
logger.info(f"Request {g.request_id}: Creating requirements using LLM")
clean_solution = data['cleanSolution'] if ('cleanSolution' in data) and isinstance(data['cleanSolution'],
bool) else False
if clean_solution is False:
templates = ['create_brd.jinja2', 'create_prd.jinja2', 'create_nfr.jinja2', 'create_uir.jinja2']
executor = ExecutorConfig().get_executor()
futures = [executor.submit(get_llm_response, template) for template in templates]
for future in concurrent.futures.as_completed(futures):
try:
llm_response_dict = future.result()
final_llm_response_dict.update(llm_response_dict)
except Exception as e:
logger.exception(f"Request {g.request_id}: Error in one or more LLM responses: {str(e)}")
import traceback
errors.append(traceback.format_exc())
traceback.print_exc()
raise CustomAppException("Error in one or more LLM responses", status_code=500, payload={"errors": errors})
merged_data = {**data, **final_llm_response_dict}
logger.info(f"Request {g.request_id}: Exited <create_solutions_withoutyaml> successfully")
return merged_data
@solution_api.route("/api/solutions/update", methods=["POST"])
@require_access_code()
def update_solution_reqt():
logger.info(f"Request {g.request_id}: Entered <update_solution_reqt>")
data = request.get_json()
llm_response_dict = {} # Initialize the variable here
template = jinja_template_env.get_template('02_update.jinja2')
updatedReqt = data["updatedReqt"]
fileContent = data["fileContent"]
if data["useGenAI"] or fileContent:
template = template.render(
name=data["name"],
description=data["description"],
existingReqt=data["reqDesc"],
fileContent=fileContent,
updatedReqt=updatedReqt,
reqId=data["reqId"],
addReqtType=data["addReqtType"]
)
llm_response = llm_service.call_llm(template)
else:
updatedReqt = f'{updatedReqt} {data["reqDesc"]}'
llm_response = json.dumps(
{"updated": {"title": data["title"], "requirement": updatedReqt}}
)
try:
llm_response_dict = json.loads(llm_response)
logger.info(f"Request {g.request_id}: Successfully updated solution")
except json.JSONDecodeError as e:
logger.error(f"Request {g.request_id}: Failed to parse LLM response: {llm_response}")
raise CustomAppException(
"Invalid JSON format. Please try again.",
status_code=500,
payload={"llm_response": llm_response},
) from e
merged_data = {**data, **llm_response_dict}
logger.info(f"Request {g.request_id}: Exited <update_solution_reqt> successfully")
return merged_data
@solution_api.route("/api/solutions/add", methods=["POST"])
@require_access_code()
def add_solution_reqt():
logger.info(f"Request {g.request_id}: Entered <add_solution_reqt>")
data = request.get_json()
llm_response_dict = {} # Initialize the variable here
template = jinja_template_env.get_template('03_add.jinja2')
newReqt = data["reqt"]
fileContent = data["fileContent"]
if data["useGenAI"] or fileContent:
template = template.render(
name=data["name"],
description=data["description"],
newReqt=newReqt,
fileContent=fileContent,
addReqtType=data["addReqtType"],
)
llm_response = llm_service.call_llm(template)
else:
llm_response = json.dumps(
{"LLMreqt": {"title": data["title"], "requirement": newReqt}}
)
try:
llm_response_dict = json.loads(llm_response)
logger.info(f"Request {g.request_id}: Successfully added solution requirement")
except json.JSONDecodeError as exc:
logger.error(f"Request {g.request_id}: Failed to parse LLM response: {llm_response}")
raise CustomAppException(
"Invalid JSON format. Please try again.",
status_code=500,
payload={"llm_response": llm_response},
) from exc
merged_data = {**data, **llm_response_dict}
logger.info(f"Request {g.request_id}: Exited <add_solution_reqt>")
return merged_data
@solution_api.route("/api/solutions/stories", methods=["POST"])
@require_access_code()
def create_stories():
logger.info(f"Request {g.request_id}: Entered <create_stories>")
try:
data = request.get_json()
# 1. Generate User Stories/Features based on the inputs
feature_template = jinja_template_env.get_template('05_refine.jinja2')
feature_req = feature_template.render(
requirements=data["reqDesc"], extraContext=data["extraContext"], technologies=data['technicalDetails']
)
features = llm_service.call_llm(feature_req)
splits = [line for line in features.strip().split("\n") if line.strip()]
# 2. Evaluation of generated user stories/features
feature_evaluation_template = jinja_template_env.get_template('06_evaluate.jinja2')
features_splits_json = json.dumps(splits)
parsed_evaluation = feature_evaluation_template.render(
requirements=data["reqDesc"], features=features_splits_json
)
evaluation = llm_service.call_llm(parsed_evaluation)
# 3. After the evaluation the response is sent back to LLM, generate the final set of US/features
final_features = feature_template.render(
requirements=data["reqDesc"], features=features, evaluation=evaluation
)
final_features_res = llm_service.call_llm(final_features)
try:
pre_format_response = json.loads(final_features_res)
llm_response_dict = {"features": [{"id": i["id"], i["title"]: i["description"]} for i in pre_format_response['features']]}
except json.JSONDecodeError as exc:
logger.error(f"Request {g.request_id}: Failed to parse LLM response: {final_features_res}")
raise CustomAppException(
"Invalid JSON format. Please try again.",
status_code=500,
payload={"features": final_features_res},
) from exc
merged_data = {**data, **llm_response_dict}
logger.info(f"Request {g.request_id}: Exited <create_stories>")
return merged_data
except Exception as e:
logger.error(f"Request {g.request_id}: An unexpected error occurred in <create_stories>: {str(e)}")
raise CustomAppException(
"An unexpected error occurred while creating the user stories.",
status_code=500,
) from e
# Generate task without yaml
@solution_api.route("/api/solutions/task", methods=["POST"])
@require_access_code()
def create_task():
logger.info(f"Request {g.request_id}: Entered <create_task>")
try:
data = request.get_json()
task_template = jinja_template_env.get_template('07_task.jinja2')
task_req = task_template.render(
name=data["name"], userstories=data["description"], extraContext=data["extraContext"], technologies=data['technicalDetails']
)
llm_response = llm_service.call_llm(task_req)
try:
pre_format_response = json.loads(llm_response)
llm_response_dict = {"tasks": [{"id": i["id"], i["name"]: i["acceptance"]} for i in pre_format_response['tasks']]}
except json.JSONDecodeError as exc:
logger.error(f"Request {g.request_id}: Failed to parse LLM response: {llm_response}")
raise CustomAppException(
"Invalid JSON format. Please try again.",
status_code=500,
payload={"llm_response": llm_response},
) from exc
merged_data = {**data, **llm_response_dict}
logger.info(f"Request {g.request_id}: Exited <create_task>")
return merged_data
except Exception as e:
logger.error(f"Request {g.request_id}: An unexpected error occurred in <create_task>: {str(e)}")
raise CustomAppException(
"An unexpected error occurred while creating the task for user stories.",
status_code=500,
) from e
@solution_api.route("/api/solutions/task/update", methods=["PUT"])
@require_access_code()
def update_task():
logger.info(f"Request {g.request_id}: Entered <update_task>")
data = request.get_json()
llm_response_dict = {}
template = render_template(p_update_task)
reqDesc = data["reqDesc"]
taskId = data["taskId"]
fileContent = data["fileContent"]
if data["contentType"] == "fileContent":
if data["reqDesc"] and data["useGenAI"]:
fileContent = data["fileContent"]
reqDesc = data["reqDesc"]
else:
fileContent = data["fileContent"]
reqDesc = ""
elif data["reqDesc"] and data["useGenAI"]:
reqDesc = data["reqDesc"]
fileContent = ""
else:
reqDesc = data["reqDesc"]
fileContent = ""
template = template.render(
name=data["name"],
description=data["description"],
taskId=taskId,
taskName=data["taskName"],
existingTaskDescription=data["existingTaskDesc"],
taskDescription=reqDesc,
fileContent=fileContent,
)
llm_response = llm_service.call_llm(template)
try:
llm_response_dict = json.loads(llm_response)
except json.JSONDecodeError as exc:
logger.error(f"Request {g.request_id}: Failed to parse LLM response: {llm_response}")
raise CustomAppException(
"Invalid JSON format. Please try again.",
status_code=500,
payload={"llm_response": llm_response},
) from exc
merged_data = {**data, **llm_response_dict}
logger.info(f"Request {g.request_id}: Exited <update_task>")
return merged_data
@solution_api.route("/api/solutions/task/add", methods=["POST"])
@require_access_code()
def add_task():
logger.info(f"Request {g.request_id}: Entered <add_task>")
data = request.get_json()
llm_response_dict = {}
template = render_template(p_add_task)
reqDesc = data["reqDesc"]
taskId = data["taskId"]
fileContent = data["fileContent"]
if data.get("contentType") == "fileContent":
if data["reqDesc"] and data["useGenAI"]:
fileContent = data["fileContent"]
reqDesc = data["reqDesc"]
else:
fileContent = data["fileContent"]
reqDesc = ""
elif data["reqDesc"] and data["useGenAI"]:
reqDesc = data["reqDesc"]
fileContent = ""
else:
reqDesc = data["reqDesc"]
fileContent = ""
template = template.render(
name=data["name"],
description=data["description"],
taskId=taskId,
taskName=data["taskName"],
taskDescription=reqDesc,
fileContent=fileContent,
)
llm_response = llm_service.call_llm(template)
try:
llm_response_dict = json.loads(llm_response)
logger.info(f"Request {g.request_id}: Successfully processed task creation.")
except json.JSONDecodeError as exc:
logger.error(f"Request {g.request_id}: Failed to parse LLM response: {llm_response}")
raise CustomAppException(
"Invalid JSON format. Please try again.",
status_code=500,
payload={"llm_response": llm_response},
) from exc
merged_data = {**data, **llm_response_dict}
logger.info(f"Request {g.request_id}: Exited <add_task>")
return merged_data
@solution_api.route("/api/solutions/story/update", methods=["PUT"])
@require_access_code()
def update_user_story():
logger.info(f"Request {g.request_id}: Entered <update_user_story>")
data = request.get_json()
llm_response_dict = {}
template = render_template(p_update_user_story)
reqDesc = data["reqDesc"]
featureId = data["featureId"]
featureRequest = data["featureRequest"]
fileContent = data["fileContent"]
if data.get("contentType") == "fileContent":
if data["featureRequest"] and data["useGenAI"]:
fileContent = data["fileContent"]
featureRequest = data["featureRequest"]
else:
fileContent = data["fileContent"]
featureRequest = ""
elif data["featureRequest"] and data["useGenAI"]:
featureRequest = data["featureRequest"]
fileContent = ""
else:
featureRequest = data["featureRequest"]
fileContent = ""
template = template.render(
name=data["name"],
description=data["description"],
reqDesc=reqDesc,
featureId=featureId,
existingFeatureDescription=data["existingFeatureDesc"],
newFeatureDescription=featureRequest,
fileContent=fileContent,
)
llm_response = llm_service.call_llm(template)
try:
llm_response_dict = json.loads(llm_response)
logger.info(f"Request {g.request_id}: Successfully processed user story update.")
except json.JSONDecodeError as exc:
logger.error(f"Request {g.request_id}: Failed to parse LLM response: {llm_response}")
raise CustomAppException(
"Invalid JSON format. Please try again.",
status_code=500,
payload={"llm_response": llm_response},
) from exc
merged_data = {**data, **llm_response_dict}
logger.info(f"Request {g.request_id}: Exited <update_user_story> successfully.")
return merged_data
@solution_api.route("/api/solutions/story/add", methods=["POST"])
@require_access_code()
def add_user_story():
try:
logger.info(f"Request {g.request_id}: Entered <add_user_story>")
data = request.get_json()
llm_response_dict = {}
template = jinja_template_env.get_template('11_add_user_story.jinja2')
reqDesc = data["reqDesc"]
featureId = data["featureId"]
fileContent = data["fileContent"]
if data.get("contentType") == "fileContent":
if data["featureRequest"] and data["useGenAI"]:
fileContent = data["fileContent"]
featureRequest = data["featureRequest"]
else:
fileContent = data["fileContent"]
featureRequest = ""
elif data["featureRequest"] and data["useGenAI"]:
featureRequest = data["featureRequest"]
fileContent = ""
else:
featureRequest = ""
fileContent = ""
template = template.render(
name=data["name"],
description=data["description"],
reqDesc=reqDesc,
featureId=featureId,
featureRequest=featureRequest,
fileContent=fileContent,
)
llm_response = llm_service.call_llm(template)
try:
llm_response_dict = json.loads(llm_response)
logger.info(f"Request {g.request_id}: Successfully processed user story addition.")
except json.JSONDecodeError as exc:
logger.error(f"Request {g.request_id}: Failed to parse LLM response: {llm_response}")
raise CustomAppException(
"Invalid JSON format. Please try again.",
status_code=500,
payload={"llm_response": llm_response},
) from exc
merged_data = {**data, **llm_response_dict}
logger.info(f"Request {g.request_id}: Exited <add_user_story>")
return merged_data
except Exception as exception:
logger.error("An error occurred during create Story: %s", str(exception))
raise CustomAppException("Something went wrong! Error in Create Story Api")
@solution_api.route("/api/solutions/business_process/add", methods=["POST"])
@require_access_code()
def add_business_process():
logger.info(f"Request {g.request_id}: Entered <add_business_process>")
data = request.get_json()
llm_response_dict = {}
template = render_template(p_add_business_process)
newReqt = data["reqt"]
BRDS = " ".join(data["selectedBRDs"])
PRDS = " ".join(data["selectedPRDs"])
if data["useGenAI"]:
template = template.render(
name=data["name"],
description=data["description"],
newReqt=newReqt,
BRDS=BRDS,
PRDS=PRDS,
)
llm_response = llm_service.call_llm(template)
else:
llm_response = json.dumps(
{"LLMreqt": {"title": data["title"], "requirement": newReqt}}
)
try:
llm_response_dict = json.loads(llm_response)
except json.JSONDecodeError as exc:
logger.error(f"Request {g.request_id}: Failed to parse LLM response: {llm_response}")
raise CustomAppException(
"Invalid JSON format. Please try again.",
status_code=500,
payload={"llm_response": llm_response},
) from exc
merged_data = {**data, **llm_response_dict}
logger.info(f"Request {g.request_id}: Exited <add_business_process>")
return merged_data
@solution_api.route("/api/solutions/business_process/update", methods=["PUT"])
@require_access_code()
def update_business_process():
logger.info(f"Request {g.request_id}: Entered <update_business_process>")
data = request.get_json()
llm_response_dict = {} # Initialize the variable here
template = render_template(p_update_business_process)
updatedReqt = data["updatedReqt"]
BRDS = " ".join(data["selectedBRDs"])
PRDS = " ".join(data["selectedPRDs"])
if data["useGenAI"]:
template = template.render(
name=data["name"],
description=data["description"],
existingReqt=data["reqDesc"],
updatedReqt=updatedReqt,
reqId=data["reqId"],
BRDS=BRDS,
PRDS=PRDS,
)
llm_response = llm_service.call_llm(template)
else:
llm_response = json.dumps(
{"updated": {"title": data["title"], "requirement": updatedReqt}}
)
try:
llm_response_dict = json.loads(llm_response)
except json.JSONDecodeError as exc:
logger.error(f"Request {g.request_id}: Failed to parse LLM response: {llm_response}")
raise CustomAppException(
"Invalid JSON format. Please try again.",
status_code=500,
payload={"llm_response": llm_response},
) from exc
merged_data = {**data, **llm_response_dict}
logger.info(f"Request {g.request_id}: Exited <update_business_process>")
return merged_data
@solution_api.route("/api/solutions/integration/knowledgebase/validation", methods=["POST"])
@require_access_code()
def validate_bedrock_id():
logger.info(f"Request {g.request_id}: Entered <validate_bedrock_id>")
data = request.get_json()
if not data or 'bedrockId' not in data:
logger.error(
f"Request {g.request_id}: Missing bedrock_id in payload")
raise CustomAppException(
"Payload must include 'bedrock_id'",
status_code=400
)
bedrock_id = data['bedrockId']
try:
AmazonKnowledgeBasesRetriever(
knowledge_base_id=bedrock_id,
retrieval_config={
"vectorSearchConfiguration": {"numberOfResults": 1}},
).invoke("test connection")
logger.info(f"Request {g.request_id}: Exited <validate_bedrock_id>")
return json.dumps({"isValid": True}), 200
except Exception as e:
logger.error(f"Request {g.request_id}: Failed to validate bedrock_id: {str(e)}")
return json.dumps({"isValid": False}), 200