-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
190 lines (164 loc) · 6.35 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
from torch import optim
from const import Phase
from batch import create_dataset
from models import Baseline
from sklearn.metrics import classification_report
def run(dataset_train,
dataset_dev,
dataset_test,
model_type,
word_embed_size,
hidden_size,
batch_size,
use_cuda,
n_epochs):
if model_type == 'base':
model = Baseline(vocab=dataset_train.vocab,
word_embed_size=word_embed_size,
hidden_size=hidden_size,
use_cuda=use_cuda,
inference=False)
else:
raise NotImplementedError
if use_cuda:
model = model.cuda()
optim_params = model.parameters()
optimizer = optim.Adam(optim_params, lr=10**-3)
print('start training')
for epoch in range(n_epochs):
train_loss, tokens, preds, golds = train(dataset_train,
model,
optimizer,
batch_size,
epoch,
Phase.TRAIN,
use_cuda)
dev_loss, tokens, preds, golds = train(dataset_dev,
model,
optimizer,
batch_size,
epoch,
Phase.DEV,
use_cuda)
logger = '\t'.join(['epoch {}'.format(epoch+1),
'TRAIN Loss: {:.9f}'.format(train_loss),
'DEV Loss: {:.9f}'.format(dev_loss)])
print('\r'+logger, end='')
test_loss, tokens, preds, golds = train(dataset_test,
model,
optimizer,
batch_size,
epoch,
Phase.TEST,
use_cuda)
print('====', 'TEST', '=====')
print_scores(preds, golds)
output_results(tokens, preds, golds)
def train(dataset,
model,
optimizer,
batch_size,
n_epoch,
phase,
use_cuda):
total_loss = 0.0
tokens = []
preds = []
labels = []
if phase == Phase.TRAIN:
model.train()
else:
model.eval()
for batch in dataset.batch_iter:
token = getattr(batch, 'token')
label = getattr(batch, 'label')
if use_cuda:
raw_sentences = dataset.get_raw_sentence(token.data.cpu().numpy())
else:
raw_sentences = dataset.get_raw_sentence(token.data.numpy())
loss, pred = \
model(token, raw_sentences, label, phase)
if phase == Phase.TRAIN:
optimizer.zero_grad()
torch.nn.utils.clip_grad_norm(model.parameters(), max_norm=5)
loss.backward()
optimizer.step()
# remove PAD from input sentences/labels and results
mask = (token != dataset.pad_index)
length_tensor = mask.sum(1)
if use_cuda:
length_tensor = length_tensor.data.cpu().numpy()
else:
length_tensor = length_tensor.data.numpy()
for index, n_tokens_in_the_sentence in enumerate(length_tensor):
if n_tokens_in_the_sentence > 0:
tokens.append(raw_sentences[index][:n_tokens_in_the_sentence])
_label = label[index][:n_tokens_in_the_sentence]
_pred = pred[index][:n_tokens_in_the_sentence]
if use_cuda:
_label = _label.data.cpu().numpy()
_pred = _pred.data.cpu().numpy()
else:
_label = _label.data.numpy()
_pred = _pred.data.numpy()
labels.append(_label)
preds.append(_pred)
total_loss += loss.data.mean()
return total_loss, tokens, preds, labels
def read_two_cols_data(fname):
data = {}
tokens = []
labels = []
token = []
label = []
with open(fname, mode='r') as f:
for line in f:
line = line.strip().lower().split()
if line:
try:
_token, _label = line
except ValueError:
raise
token.append(_token)
if _label == '0' or _label == '1':
label.append(int(_label))
else:
if _label == 'del':
label.append(1)
else:
label.append(0)
else:
tokens.append(token)
labels.append(label)
token = []
label = []
data['tokens'] = tokens
data['labels'] = labels
return data
def load(train_path, dev_path, test_path, batch_size, device):
train = read_two_cols_data(train_path)
dev = read_two_cols_data(dev_path)
test = read_two_cols_data(test_path)
data = {Phase.TRAIN: train, Phase.DEV: dev, Phase.TEST: test}
return create_dataset(data, batch_size=batch_size, device=device)
def print_scores(preds, golds):
_preds = [label for sublist in preds for label in sublist]
_golds = [label for sublist in golds for label in sublist]
target_names = ['not_del', 'del']
print(classification_report(_golds, _preds, target_names=target_names, digits=5))
def output_results(tokens, preds, golds, path='./result/sentcomp'):
with open(path+'.original.txt', mode='w') as w, \
open(path+'.gold.txt', mode='w') as w_gold, \
open(path+'.pred.txt', mode='w') as w_pred:
for _tokens, _golds, _preds in zip(tokens, golds, preds):
for token, gold, pred in zip(_tokens, _golds, _preds):
w.write(token + ' ')
if gold == 0:
w_gold.write(token + ' ')
# 0 -> keep, 1 -> delete
if pred == 0:
w_pred.write(token + ' ')
w.write('\n')
w_gold.write('\n')
w_pred.write('\n')