forked from VikParuchuri/surya
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognition.py
193 lines (159 loc) · 8.63 KB
/
recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import argparse
from collections import defaultdict
import click
from benchmark.utils.scoring import overlap_score
from surya.input.processing import convert_if_not_rgb
from surya.debug.text import draw_text_on_image
from surya.recognition import RecognitionPredictor
from surya.settings import settings
from surya.recognition.languages import CODE_TO_LANGUAGE
from benchmark.utils.tesseract import tesseract_ocr_parallel, surya_lang_to_tesseract, TESS_CODE_TO_LANGUAGE
from benchmark.utils.textract import textract_ocr_parallel
import os
import datasets
import json
import time
from tabulate import tabulate
KEY_LANGUAGES = ["Chinese", "Spanish", "English", "Arabic", "Hindi", "Bengali", "Russian", "Japanese"]
@click.command(help="Benchmark recognition model.")
@click.option("--results_dir", type=str, help="Path to JSON file with OCR results.", default=os.path.join(settings.RESULT_DIR, "benchmark"))
@click.option("--max_rows", type=int, help="Maximum number of pdf pages to OCR.", default=None)
@click.option("--debug", is_flag=True, help="Enable debug mode.", default=False)
@click.option("--tesseract", is_flag=True, help="Run benchmarks on tesseract.", default=False)
@click.option("--textract", is_flag=True, help="Run benchmarks on textract.", default=False)
@click.option("--langs", type=str, help="Specify certain languages to benchmark.", default=None)
@click.option("--tess_cpus", type=int, help="Number of CPUs to use for tesseract.", default=28)
@click.option("--textract_cpus", type=int, help="Number of CPUs to use for textract.", default=28)
@click.option("--specify_language", is_flag=True, help="Pass language codes into the model.", default=False)
def main(results_dir: str, max_rows: int, debug: bool, tesseract: bool, textract: bool, langs: str, tess_cpus: int, textract_cpus:int, specify_language: bool):
rec_predictor = RecognitionPredictor()
split = "train"
dataset = datasets.load_dataset(settings.RECOGNITION_BENCH_DATASET_NAME, split=split)
if langs:
langs = langs.split(",")
dataset = dataset.filter(lambda x: x["language"] in langs, num_proc=4)
if max_rows and max_rows<len(dataset):
dataset = dataset.shuffle().select(range(max_rows))
images = list(dataset["image"])
images = convert_if_not_rgb(images)
bboxes = list(dataset["bboxes"])
line_text = list(dataset["text"])
languages = list(dataset["language"])
print(f"Loaded {len(images)} images. Running OCR...")
lang_list = []
for l in languages:
if not isinstance(l, list):
lang_list.append([l])
else:
lang_list.append(l)
n_list = [None] * len(images)
if settings.RECOGNITION_STATIC_CACHE:
# Run through one batch to compile the model
rec_predictor(images[:1], lang_list[:1], bboxes=bboxes[:1])
start = time.time()
predictions_by_image = rec_predictor(images, lang_list if specify_language else n_list, bboxes=bboxes)
surya_time = time.time() - start
surya_scores = defaultdict(list)
img_surya_scores = []
for idx, (pred, ref_text, lang) in enumerate(zip(predictions_by_image, line_text, lang_list)):
pred_text = [l.text for l in pred.text_lines]
image_score = overlap_score(pred_text, ref_text)
img_surya_scores.append(image_score)
for l in lang:
surya_scores[CODE_TO_LANGUAGE[l]].append(image_score)
flat_surya_scores = [s for l in surya_scores for s in surya_scores[l]]
benchmark_stats = {
"surya": {
"avg_score": sum(flat_surya_scores) / max(1, len(flat_surya_scores)),
"lang_scores": {l: sum(scores) / max(1, len(scores)) for l, scores in surya_scores.items()},
"time_per_img": surya_time / max(1, len(images))
}
}
result_path = os.path.join(results_dir, "rec_bench")
os.makedirs(result_path, exist_ok=True)
with open(os.path.join(result_path, "surya_scores.json"), "w+") as f:
json.dump(surya_scores, f)
if tesseract:
tess_valid = []
tess_langs = []
for idx, lang in enumerate(lang_list):
# Tesseract does not support all languages
tess_lang = surya_lang_to_tesseract(lang[0])
if tess_lang is None:
continue
tess_valid.append(idx)
tess_langs.append(tess_lang)
tess_imgs = [images[i] for i in tess_valid]
tess_bboxes = [bboxes[i] for i in tess_valid]
tess_reference = [line_text[i] for i in tess_valid]
start = time.time()
tess_predictions = tesseract_ocr_parallel(tess_imgs, tess_bboxes, tess_langs, cpus=tess_cpus)
tesseract_time = time.time() - start
tess_scores = defaultdict(list)
for idx, (pred, ref_text, lang) in enumerate(zip(tess_predictions, tess_reference, tess_langs)):
image_score = overlap_score(pred, ref_text)
tess_scores[TESS_CODE_TO_LANGUAGE[lang]].append(image_score)
flat_tess_scores = [s for l in tess_scores for s in tess_scores[l]]
benchmark_stats["tesseract"] = {
"avg_score": sum(flat_tess_scores) / len(flat_tess_scores),
"lang_scores": {l: sum(scores) / len(scores) for l, scores in tess_scores.items()},
"time_per_img": tesseract_time / len(tess_imgs)
}
with open(os.path.join(result_path, "tesseract_scores.json"), "w+") as f:
json.dump(tess_scores, f)
if textract:
start = time.time()
textract_predictions = textract_ocr_parallel(images, cpus=textract_cpus)
textract_time = time.time()-start
textract_scores = defaultdict(list)
for idx, (pred, ref_text, lang) in enumerate(zip(textract_predictions, line_text, lang_list)):
image_score = overlap_score(pred, ref_text)
for l in lang:
textract_scores[CODE_TO_LANGUAGE[l]].append(image_score)
flat_textract_scores = [s for l in textract_scores for s in textract_scores[l]]
benchmark_stats["textract"] = {
"avg_score": sum(flat_textract_scores) / len(flat_textract_scores),
"lang_scores": {l: sum(scores) / len(scores) for l, scores in textract_scores.items()},
"time_per_img": textract_time / len(images)
}
print(len(flat_textract_scores))
with open(os.path.join(result_path, "textract_scores.json"), "w+") as f:
json.dump(textract_scores, f)
with open(os.path.join(result_path, "results.json"), "w+", encoding="utf-8") as f:
json.dump(benchmark_stats, f)
key_languages = [k for k in KEY_LANGUAGES if k in surya_scores]
table_headers = ["Model", "Time per page (s)", "Avg Score"] + key_languages
table_data = [
["surya", benchmark_stats["surya"]["time_per_img"], benchmark_stats["surya"]["avg_score"]] + [benchmark_stats["surya"]["lang_scores"][l] for l in key_languages],
]
if tesseract:
table_data.append(
["tesseract", benchmark_stats["tesseract"]["time_per_img"], benchmark_stats["tesseract"]["avg_score"]] + [benchmark_stats["tesseract"]["lang_scores"].get(l, 0) for l in key_languages]
)
if textract:
table_data.append(
["textract", benchmark_stats["textract"]["time_per_img"], benchmark_stats["textract"]["avg_score"]] + [benchmark_stats["textract"]["lang_scores"][l] for l in key_languages],
)
print(tabulate(table_data, headers=table_headers, tablefmt="github"))
print("Only a few major languages are displayed. See the result path for additional languages.")
if debug >= 1:
bad_detections = []
for idx, (score, lang) in enumerate(zip(flat_surya_scores, lang_list)):
if score < .8:
bad_detections.append((idx, lang, score))
print(f"Found {len(bad_detections)} bad detections. Writing to file...")
with open(os.path.join(result_path, "bad_detections.json"), "w+") as f:
json.dump(bad_detections, f)
if debug == 2:
for idx, (image, pred, ref_text, bbox, lang) in enumerate(zip(images, predictions_by_image, line_text, bboxes, lang_list)):
pred_image_name = f"{'_'.join(lang)}_{idx}_pred.png"
ref_image_name = f"{'_'.join(lang)}_{idx}_ref.png"
pred_text = [l.text for l in pred.text_lines]
pred_image = draw_text_on_image(bbox, pred_text, image.size, lang)
pred_image.save(os.path.join(result_path, pred_image_name))
ref_image = draw_text_on_image(bbox, ref_text, image.size, lang)
ref_image.save(os.path.join(result_path, ref_image_name))
image.save(os.path.join(result_path, f"{'_'.join(lang)}_{idx}_image.png"))
print(f"Wrote results to {result_path}")
if __name__ == "__main__":
main()