forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_ivfflat_cuvs.py
167 lines (127 loc) · 5.27 KB
/
bench_ivfflat_cuvs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# @lint-ignore-every LICENSELINT
# Copyright (c) Meta Platforms, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
# Copyright (c) 2024-2025, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import faiss
import time
import argparse
import rmm
try:
from faiss.contrib.datasets_fb import \
DatasetSIFT1M, DatasetDeep1B, DatasetBigANN
except ImportError:
from faiss.contrib.datasets import \
DatasetSIFT1M, DatasetDeep1B, DatasetBigANN
# ds = DatasetDeep1B(10**6)
# ds = DatasetBigANN(nb_M=1)
ds = DatasetSIFT1M()
xq = ds.get_queries()
xb = ds.get_database()
gt = ds.get_groundtruth()
xt = ds.get_train()
nb, d = xb.shape
nq, d = xq.shape
nt, d = xt.shape
######################################################
# Command-line parsing
######################################################
parser = argparse.ArgumentParser()
def aa(*args, **kwargs):
group.add_argument(*args, **kwargs)
group = parser.add_argument_group('benchmarking options')
aa('--bm_train', default=True,
help='whether to benchmark train operation on GPU index')
aa('--bm_add', default=True,
help='whether to benchmark add operation on GPU index')
aa('--bm_search', default=True,
help='whether to benchmark search operation on GPU index')
group = parser.add_argument_group('IVF options')
aa('--nlist', default=1024, type=int,
help="number of IVF centroids")
group = parser.add_argument_group('searching')
aa('--k', default=10, type=int, help='nb of nearest neighbors')
aa('--nprobe', default=10, help='nb of IVF lists to probe')
args = parser.parse_args()
print("args:", args)
rs = np.random.RandomState(123)
res = faiss.StandardGpuResources()
# Use an RMM pool memory resource for device allocations
mr = rmm.mr.PoolMemoryResource(rmm.mr.CudaMemoryResource())
rmm.mr.set_current_device_resource(mr)
def bench_train_milliseconds(trainVecs, ncols, nlist, use_cuvs):
config = faiss.GpuIndexIVFFlatConfig()
config.use_cuvs = use_cuvs
index = faiss.GpuIndexIVFFlat(res, ncols, nlist, faiss.METRIC_L2, config)
t0 = time.time()
index.train(trainVecs)
return 1000*(time.time() - t0)
#warmup
xw = rs.rand(nt, d)
bench_train_milliseconds(xw, d, args.nlist, True)
if args.bm_train:
print("=" * 40)
print("GPU Train Benchmarks")
print("=" * 40)
cuvs_gpu_train_time = bench_train_milliseconds(xt, d, args.nlist, True)
classical_gpu_train_time = bench_train_milliseconds(xt, d, args.nlist, False)
print("Method: IVFFlat, Operation: TRAIN, dim: %d, nlist %d, numTrain: %d, classical GPU train time: %.3f milliseconds, cuVS enabled GPU train time: %.3f milliseconds" % (
d, args.nlist, nt, classical_gpu_train_time, cuvs_gpu_train_time))
def bench_add_milliseconds(addVecs, q, use_cuvs):
# construct a GPU index using the same trained coarse quantizer
config = faiss.GpuIndexIVFFlatConfig()
config.use_cuvs = use_cuvs
index_gpu = faiss.GpuIndexIVFFlat(res, q, d, args.nlist, faiss.METRIC_L2, config)
assert(index_gpu.is_trained)
t0 = time.time()
index_gpu.add(addVecs)
return 1000*(time.time() - t0)
if args.bm_add:
print("=" * 40)
print("GPU Add Benchmarks")
print("=" * 40)
quantizer = faiss.IndexFlatL2(d)
idx_cpu = faiss.IndexIVFFlat(quantizer, d, args.nlist)
idx_cpu.train(xt)
cuvs_gpu_add_time = bench_add_milliseconds(xb, quantizer, True)
classical_gpu_add_time = bench_add_milliseconds(xb, quantizer, False)
print("Method: IVFFlat, Operation: ADD, dim: %d, nlist %d, numAdd: %d, classical GPU add time: %.3f milliseconds, cuVS enabled GPU add time: %.3f milliseconds" % (
d, args.nlist, nb, classical_gpu_add_time, cuvs_gpu_add_time))
def bench_search_milliseconds(index, queryVecs, nprobe, k, use_cuvs):
co = faiss.GpuClonerOptions()
co.use_cuvs = use_cuvs
index_gpu = faiss.index_cpu_to_gpu(res, 0, index, co)
index_gpu.nprobe = nprobe
t0 = time.time()
index_gpu.search(queryVecs, k)
return 1000*(time.time() - t0)
if args.bm_search:
print("=" * 40)
print("GPU Search Benchmarks")
print("=" * 40)
idx_cpu = faiss.IndexIVFFlat(
faiss.IndexFlatL2(d), d, args.nlist)
idx_cpu.train(xt)
idx_cpu.add(xb)
cuvs_gpu_search_time = bench_search_milliseconds(
idx_cpu, xq, args.nprobe, args.k, True)
classical_gpu_search_time = bench_search_milliseconds(
idx_cpu, xq, args.nprobe, args.k, False)
print("Method: IVFFlat, Operation: SEARCH, dim: %d, nlist: %d, numVecs: %d, numQuery: %d, nprobe: %d, k: %d, classical GPU search time: %.3f milliseconds, cuVS enabled GPU search time: %.3f milliseconds" % (
d, args.nlist, nb, nq, args.nprobe, args.k, classical_gpu_search_time, cuvs_gpu_search_time))