forked from apache/horaedb
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathencoding.rs
1170 lines (1038 loc) · 37.6 KB
/
encoding.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2023 The CeresDB Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::{convert::TryFrom, mem, sync::Arc};
use arrow::{
array::{make_array, Array, ArrayData, ArrayRef},
buffer::MutableBuffer,
compute,
record_batch::RecordBatch as ArrowRecordBatch,
util::bit_util,
};
use async_trait::async_trait;
use bytes_ext::{BytesMut, SafeBufMut};
use ceresdbproto::sst as sst_pb;
use common_types::{
datum::DatumKind,
schema::{ArrowSchema, ArrowSchemaRef, DataType, Field, Schema},
};
use generic_error::{BoxError, GenericError};
use log::trace;
use macros::define_result;
use parquet::{
arrow::AsyncArrowWriter,
basic::Compression,
file::{metadata::KeyValue, properties::WriterProperties},
};
use prost::Message;
use snafu::{ensure, Backtrace, OptionExt, ResultExt, Snafu};
use tokio::io::{AsyncWrite, AsyncWriteExt};
use crate::sst::parquet::{
hybrid::{self, IndexedType},
meta_data::ParquetMetaData,
};
// TODO: Only support i32 offset now, consider i64 here?
const OFFSET_SIZE: usize = std::mem::size_of::<i32>();
#[derive(Debug, Snafu)]
pub enum Error {
#[snafu(display(
"Failed to encode sst meta data, err:{}.\nBacktrace:\n{}",
source,
backtrace
))]
EncodeIntoPb {
source: prost::EncodeError,
backtrace: Backtrace,
},
#[snafu(display(
"Failed to decode sst meta data, base64 of meta value:{}, err:{}.\nBacktrace:\n{}",
meta_value,
source,
backtrace,
))]
DecodeFromPb {
meta_value: String,
source: prost::DecodeError,
backtrace: Backtrace,
},
#[snafu(display(
"Invalid meta key, expect:{}, given:{}.\nBacktrace:\n{}",
expect,
given,
backtrace
))]
InvalidMetaKey {
expect: String,
given: String,
backtrace: Backtrace,
},
#[snafu(display("Base64 meta value not found.\nBacktrace:\n{}", backtrace))]
Base64MetaValueNotFound { backtrace: Backtrace },
#[snafu(display(
"Invalid base64 meta value length, base64 of meta value:{}.\nBacktrace:\n{}",
meta_value,
backtrace,
))]
InvalidBase64MetaValueLen {
meta_value: String,
backtrace: Backtrace,
},
#[snafu(display(
"Failed to decode base64 meta value, base64 of meta value:{}, err:{}",
meta_value,
source
))]
DecodeBase64MetaValue {
meta_value: String,
source: base64::DecodeError,
},
#[snafu(display(
"Invalid meta value length, base64 of meta value:{}.\nBacktrace:\n{}",
meta_value,
backtrace
))]
InvalidMetaValueLen {
meta_value: String,
backtrace: Backtrace,
},
#[snafu(display(
"Invalid meta value header, base64 of meta value:{}.\nBacktrace:\n{}",
meta_value,
backtrace
))]
InvalidMetaValueHeader {
meta_value: String,
backtrace: Backtrace,
},
#[snafu(display("Failed to convert sst meta data from protobuf, err:{}", source))]
ConvertSstMetaData {
source: crate::sst::parquet::meta_data::Error,
},
#[snafu(display(
"Failed to encode record batch into sst, err:{}.\nBacktrace:\n{}",
source,
backtrace
))]
EncodeRecordBatch {
source: GenericError,
backtrace: Backtrace,
},
#[snafu(display(
"Failed to decode hybrid record batch, err:{}.\nBacktrace:\n{}",
source,
backtrace
))]
DecodeRecordBatch {
source: GenericError,
backtrace: Backtrace,
},
#[snafu(display(
"Sst meta data collapsible_cols_idx is empty, fail to decode hybrid record batch.\nBacktrace:\n{}",
backtrace
))]
CollapsibleColsIdxEmpty { backtrace: Backtrace },
#[snafu(display("Tsid is required for hybrid format.\nBacktrace:\n{}", backtrace))]
TsidRequired { backtrace: Backtrace },
#[snafu(display(
"Key column must be string type. type:{}\nBacktrace:\n{}",
type_name,
backtrace
))]
StringKeyColumnRequired {
type_name: String,
backtrace: Backtrace,
},
}
define_result!(Error);
pub const META_KEY: &str = "meta";
pub const META_PATH_KEY: &str = "meta_path";
pub const META_VALUE_HEADER: u8 = 0;
/// Encode the sst meta data into binary key value pair.
pub fn encode_sst_meta_data(meta_data: ParquetMetaData) -> Result<KeyValue> {
println!("encode metadata: {meta_data:?}");
let meta_data_pb = sst_pb::ParquetMetaData::from(meta_data);
let mut buf = BytesMut::with_capacity(meta_data_pb.encoded_len() + 1);
buf.try_put_u8(META_VALUE_HEADER)
.expect("Should write header into the buffer successfully");
// encode the sst meta data into protobuf binary
meta_data_pb.encode(&mut buf).context(EncodeIntoPb)?;
Ok(KeyValue {
key: META_KEY.to_string(),
value: Some(base64::encode(buf.as_ref())),
})
}
/// Decode the sst meta data from the binary key value pair.
pub fn decode_sst_meta_data(kv: &KeyValue) -> Result<ParquetMetaData> {
ensure!(
kv.key == META_KEY,
InvalidMetaKey {
expect: META_KEY,
given: &kv.key,
}
);
let meta_value = kv.value.as_ref().context(Base64MetaValueNotFound)?;
ensure!(
!meta_value.is_empty(),
InvalidBase64MetaValueLen { meta_value }
);
let raw_bytes = base64::decode(meta_value).context(DecodeBase64MetaValue { meta_value })?;
ensure!(!raw_bytes.is_empty(), InvalidMetaValueLen { meta_value });
ensure!(
raw_bytes[0] == META_VALUE_HEADER,
InvalidMetaValueHeader { meta_value }
);
let meta_data_pb: sst_pb::ParquetMetaData =
Message::decode(&raw_bytes[1..]).context(DecodeFromPb { meta_value })?;
ParquetMetaData::try_from(meta_data_pb).context(ConvertSstMetaData)
}
/// RecordEncoder is used for encoding ArrowBatch.
///
/// TODO: allow pre-allocate buffer
#[async_trait]
trait RecordEncoder {
/// Encode vector of arrow batch, return encoded row number
async fn encode(&mut self, record_batches: Vec<ArrowRecordBatch>) -> Result<usize>;
fn set_meta_data(&mut self, meta_data: ParquetMetaData) -> Result<()>;
fn set_meta_data_path(&mut self, metadata_path: Option<String>) -> Result<()>;
/// Return encoded bytes
/// Note: trait method cannot receive `self`, so take a &mut self here to
/// indicate this encoder is already consumed
async fn close(&mut self) -> Result<()>;
}
struct ColumnarRecordEncoder<W> {
// wrap in Option so ownership can be taken out behind `&mut self`
arrow_writer: Option<AsyncArrowWriter<W>>,
arrow_schema: ArrowSchemaRef,
metadata: Option<ParquetMetaData>,
metasink: W,
}
impl<W: AsyncWrite + Send + Unpin> ColumnarRecordEncoder<W> {
fn try_new(
sink: W,
metasink: W,
schema: &Schema,
num_rows_per_row_group: usize,
max_buffer_size: usize,
compression: Compression,
) -> Result<Self> {
let arrow_schema = schema.to_arrow_schema_ref();
let write_props = WriterProperties::builder()
.set_max_row_group_size(num_rows_per_row_group)
.set_compression(compression)
.build();
let arrow_writer = AsyncArrowWriter::try_new(
sink,
arrow_schema.clone(),
max_buffer_size,
Some(write_props),
)
.box_err()
.context(EncodeRecordBatch)?;
Ok(Self {
arrow_writer: Some(arrow_writer),
arrow_schema,
metadata: None,
metasink,
})
}
}
#[async_trait]
impl<W: AsyncWrite + Send + Unpin> RecordEncoder for ColumnarRecordEncoder<W> {
async fn encode(&mut self, arrow_record_batch_vec: Vec<ArrowRecordBatch>) -> Result<usize> {
assert!(self.arrow_writer.is_some());
let record_batch = compute::concat_batches(&self.arrow_schema, &arrow_record_batch_vec)
.box_err()
.context(EncodeRecordBatch)?;
self.arrow_writer
.as_mut()
.unwrap()
.write(&record_batch)
.await
.box_err()
.context(EncodeRecordBatch)?;
Ok(record_batch.num_rows())
}
fn set_meta_data(&mut self, meta_data: ParquetMetaData) -> Result<()> {
self.metadata = Some(meta_data);
Ok(())
}
fn set_meta_data_path(&mut self, metadata_path: Option<String>) -> Result<()> {
let key_value = KeyValue {
key: META_PATH_KEY.to_string(),
value: metadata_path,
};
self.arrow_writer
.as_mut()
.unwrap()
.append_key_value_metadata(key_value);
Ok(())
}
async fn close(&mut self) -> Result<()> {
assert!(self.arrow_writer.is_some());
if let Some(metadata) = &self.metadata {
let key_value = encode_sst_meta_data(metadata.clone())?;
let v = key_value.value.unwrap();
self.metasink.write_all(v.as_bytes()).await.unwrap();
self.metasink.flush().await.unwrap();
self.metasink.shutdown().await.unwrap();
}
let arrow_writer = self.arrow_writer.take().unwrap();
arrow_writer
.close()
.await
.box_err()
.context(EncodeRecordBatch)?;
Ok(())
}
}
struct HybridRecordEncoder<W> {
// wrap in Option so ownership can be taken out behind `&mut self`
arrow_writer: Option<AsyncArrowWriter<W>>,
arrow_schema: ArrowSchemaRef,
tsid_type: IndexedType,
non_collapsible_col_types: Vec<IndexedType>,
// columns that can be collapsed into list
collapsible_col_types: Vec<IndexedType>,
collapsible_col_idx: Vec<u32>,
}
impl<W: AsyncWrite + Unpin + Send> HybridRecordEncoder<W> {
fn try_new(
sink: W,
schema: &Schema,
num_rows_per_row_group: usize,
max_buffer_size: usize,
compression: Compression,
) -> Result<Self> {
// TODO: What we really want here is a unique ID, tsid is one case
// Maybe support other cases later.
let tsid_idx = schema.index_of_tsid().context(TsidRequired)?;
let tsid_type = IndexedType {
idx: tsid_idx,
data_type: schema.column(tsid_idx).data_type,
};
let mut non_collapsible_col_types = Vec::new();
let mut collapsible_col_types = Vec::new();
let mut collapsible_col_idx = Vec::new();
for (idx, col) in schema.columns().iter().enumerate() {
if idx == tsid_idx {
continue;
}
if schema.is_collapsible_column(idx) {
collapsible_col_types.push(IndexedType {
idx,
data_type: schema.column(idx).data_type,
});
collapsible_col_idx.push(idx as u32);
} else {
// TODO: support non-string key columns
ensure!(
matches!(col.data_type, DatumKind::String),
StringKeyColumnRequired {
type_name: col.data_type.to_string(),
}
);
non_collapsible_col_types.push(IndexedType {
idx,
data_type: col.data_type,
});
}
}
let arrow_schema = hybrid::build_hybrid_arrow_schema(schema);
let write_props = WriterProperties::builder()
.set_max_row_group_size(num_rows_per_row_group)
.set_compression(compression)
.build();
let arrow_writer = AsyncArrowWriter::try_new(
sink,
arrow_schema.clone(),
max_buffer_size,
Some(write_props),
)
.box_err()
.context(EncodeRecordBatch)?;
Ok(Self {
arrow_writer: Some(arrow_writer),
arrow_schema,
tsid_type,
non_collapsible_col_types,
collapsible_col_types,
collapsible_col_idx,
})
}
}
#[async_trait]
impl<W: AsyncWrite + Unpin + Send> RecordEncoder for HybridRecordEncoder<W> {
async fn encode(&mut self, arrow_record_batch_vec: Vec<ArrowRecordBatch>) -> Result<usize> {
assert!(self.arrow_writer.is_some());
let record_batch = hybrid::convert_to_hybrid_record(
&self.tsid_type,
&self.non_collapsible_col_types,
&self.collapsible_col_types,
self.arrow_schema.clone(),
arrow_record_batch_vec,
)
.box_err()
.context(EncodeRecordBatch)?;
self.arrow_writer
.as_mut()
.unwrap()
.write(&record_batch)
.await
.box_err()
.context(EncodeRecordBatch)?;
Ok(record_batch.num_rows())
}
fn set_meta_data(&mut self, mut meta_data: ParquetMetaData) -> Result<()> {
meta_data.collapsible_cols_idx = mem::take(&mut self.collapsible_col_idx);
let key_value = encode_sst_meta_data(meta_data)?;
self.arrow_writer
.as_mut()
.unwrap()
.append_key_value_metadata(key_value);
Ok(())
}
fn set_meta_data_path(&mut self, _metadata_path: Option<String>) -> Result<()> {
Ok(())
}
async fn close(&mut self) -> Result<()> {
assert!(self.arrow_writer.is_some());
let arrow_writer = self.arrow_writer.take().unwrap();
arrow_writer
.close()
.await
.box_err()
.context(EncodeRecordBatch)?;
Ok(())
}
}
pub struct ParquetEncoder {
record_encoder: Box<dyn RecordEncoder + Send>,
}
impl ParquetEncoder {
pub fn try_new<W: AsyncWrite + Unpin + Send + 'static>(
sink: W,
metasink: W,
schema: &Schema,
hybrid_encoding: bool,
num_rows_per_row_group: usize,
max_buffer_size: usize,
compression: Compression,
) -> Result<Self> {
let record_encoder: Box<dyn RecordEncoder + Send> = if hybrid_encoding {
Box::new(HybridRecordEncoder::try_new(
sink,
schema,
num_rows_per_row_group,
max_buffer_size,
compression,
)?)
} else {
Box::new(ColumnarRecordEncoder::try_new(
sink,
metasink,
schema,
num_rows_per_row_group,
max_buffer_size,
compression,
)?)
};
Ok(ParquetEncoder { record_encoder })
}
/// Encode the record batch with [ArrowWriter] and the encoded contents is
/// written to the buffer.
pub async fn encode_record_batches(
&mut self,
arrow_record_batches: Vec<ArrowRecordBatch>,
) -> Result<usize> {
if arrow_record_batches.is_empty() {
return Ok(0);
}
self.record_encoder.encode(arrow_record_batches).await
}
pub fn set_meta_data(&mut self, meta_data: ParquetMetaData) -> Result<()> {
self.record_encoder.set_meta_data(meta_data)
}
pub fn set_meta_data_path(&mut self, meta_data_path: Option<String>) -> Result<()> {
self.record_encoder.set_meta_data_path(meta_data_path)
}
pub async fn close(mut self) -> Result<()> {
self.record_encoder.close().await
}
}
/// RecordDecoder is used for decoding ArrowRecordBatch based on
/// `schema.StorageFormat`
trait RecordDecoder {
fn decode(&self, arrow_record_batch: ArrowRecordBatch) -> Result<ArrowRecordBatch>;
}
struct ColumnarRecordDecoder {}
impl RecordDecoder for ColumnarRecordDecoder {
fn decode(&self, arrow_record_batch: ArrowRecordBatch) -> Result<ArrowRecordBatch> {
Ok(arrow_record_batch)
}
}
struct HybridRecordDecoder {
collapsible_cols_idx: Vec<u32>,
}
impl HybridRecordDecoder {
/// Convert `ListArray` fields to underlying data type
fn convert_schema(arrow_schema: ArrowSchemaRef) -> ArrowSchemaRef {
let new_fields: Vec<_> = arrow_schema
.fields()
.iter()
.map(|f| {
if let DataType::List(nested_field) = f.data_type() {
match f.data_type() {
DataType::Dictionary(_, _) => {
assert!(f.dict_id().is_some(), "Dictionary must have dict_id");
assert!(
f.dict_is_ordered().is_some(),
"Dictionary must have dict_is_ordered"
);
let dict_id = f.dict_id().unwrap();
let dict_is_ordered = f.dict_is_ordered().unwrap();
Arc::new(Field::new_dict(
f.name(),
nested_field.data_type().clone(),
true,
dict_id,
dict_is_ordered,
))
}
_ => Arc::new(Field::new(f.name(), nested_field.data_type().clone(), true)),
}
} else {
f.clone()
}
})
.collect();
Arc::new(ArrowSchema::new_with_metadata(
new_fields,
arrow_schema.metadata().clone(),
))
}
/// Stretch hybrid collapsed column into columnar column.
/// `value_offsets` specify offsets each value occupied, which means that
/// the number of a `value[n]` is `value_offsets[n] - value_offsets[n-1]`.
/// Ex:
///
/// `array_ref` is `a b c`, `value_offsets` is `[0, 3, 5, 6]`, then
/// output array is `a a a b b c`
///
/// Note: caller should ensure offsets is not empty.
fn stretch_variable_length_column(
array_ref: &ArrayRef,
value_offsets: &[i32],
) -> Result<ArrayRef> {
assert_eq!(array_ref.len() + 1, value_offsets.len());
let values_num = *value_offsets.last().unwrap() as usize;
let array_data = array_ref.to_data();
let offset_slices = array_data.buffers()[0].as_slice();
let value_slices = array_data.buffers()[1].as_slice();
let nulls = array_data.nulls();
trace!(
"raw buffer slice, offsets:{:#02x?}, values:{:#02x?}",
offset_slices,
value_slices,
);
let i32_offsets = Self::get_array_offsets(offset_slices);
let mut value_bytes = 0;
for (idx, (current, prev)) in i32_offsets[1..].iter().zip(&i32_offsets).enumerate() {
let value_len = current - prev;
let value_num = value_offsets[idx + 1] - value_offsets[idx];
value_bytes += value_len * value_num;
}
// construct new expanded array
let mut new_offsets_buffer = MutableBuffer::new(OFFSET_SIZE * values_num);
let mut new_values_buffer = MutableBuffer::new(value_bytes as usize);
let mut new_null_buffer = hybrid::new_ones_buffer(values_num);
let null_slice = new_null_buffer.as_slice_mut();
let mut value_length_so_far: i32 = 0;
new_offsets_buffer.push(value_length_so_far);
let mut bitmap_length_so_far: usize = 0;
for (idx, (current, prev)) in i32_offsets[1..].iter().zip(&i32_offsets).enumerate() {
let value_len = current - prev;
let value_num = value_offsets[idx + 1] - value_offsets[idx];
if let Some(nulls) = nulls {
if nulls.is_null(idx) {
for i in 0..value_num {
bit_util::unset_bit(null_slice, bitmap_length_so_far + i as usize);
}
}
}
bitmap_length_so_far += value_num as usize;
new_values_buffer
.extend(value_slices[*prev as usize..*current as usize].repeat(value_num as usize));
for _ in 0..value_num {
value_length_so_far += value_len;
new_offsets_buffer.push(value_length_so_far);
}
}
trace!(
"new buffer slice, offsets:{:#02x?}, values:{:#02x?}, bitmap:{:#02x?}",
new_offsets_buffer.as_slice(),
new_values_buffer.as_slice(),
new_null_buffer.as_slice(),
);
let array_data = ArrayData::builder(array_ref.data_type().clone())
.len(values_num)
.add_buffer(new_offsets_buffer.into())
.add_buffer(new_values_buffer.into())
.null_bit_buffer(Some(new_null_buffer.into()))
.build()
.box_err()
.context(DecodeRecordBatch)?;
Ok(make_array(array_data))
}
/// Like `stretch_variable_length_column`, but array value is fixed-size
/// type.
///
/// Note: caller should ensure offsets is not empty.
fn stretch_fixed_length_column(
array_ref: &ArrayRef,
value_size: usize,
value_offsets: &[i32],
) -> Result<ArrayRef> {
assert!(!value_offsets.is_empty());
let values_num = *value_offsets.last().unwrap() as usize;
let array_data = array_ref.to_data();
let old_values_buffer = array_data.buffers()[0].as_slice();
let old_nulls = array_data.nulls();
let mut new_values_buffer = MutableBuffer::new(value_size * values_num);
let mut new_null_buffer = hybrid::new_ones_buffer(values_num);
let null_slice = new_null_buffer.as_slice_mut();
let mut length_so_far = 0;
for (idx, offset) in (0..old_values_buffer.len()).step_by(value_size).enumerate() {
let value_num = (value_offsets[idx + 1] - value_offsets[idx]) as usize;
if let Some(nulls) = old_nulls {
if nulls.is_null(idx) {
for i in 0..value_num {
bit_util::unset_bit(null_slice, length_so_far + i);
}
}
}
length_so_far += value_num;
new_values_buffer
.extend(old_values_buffer[offset..offset + value_size].repeat(value_num))
}
let array_data = ArrayData::builder(array_ref.data_type().clone())
.add_buffer(new_values_buffer.into())
.null_bit_buffer(Some(new_null_buffer.into()))
.len(values_num)
.build()
.box_err()
.context(DecodeRecordBatch)?;
Ok(make_array(array_data))
}
/// Decode offset slices into Vec<i32>
fn get_array_offsets(offset_slices: &[u8]) -> Vec<i32> {
let mut i32_offsets = Vec::with_capacity(offset_slices.len() / OFFSET_SIZE);
for i in (0..offset_slices.len()).step_by(OFFSET_SIZE) {
let offset = i32::from_le_bytes(offset_slices[i..i + OFFSET_SIZE].try_into().unwrap());
i32_offsets.push(offset);
}
i32_offsets
}
}
impl RecordDecoder for HybridRecordDecoder {
/// Decode records from hybrid to columnar format
fn decode(&self, arrow_record_batch: ArrowRecordBatch) -> Result<ArrowRecordBatch> {
let new_arrow_schema = Self::convert_schema(arrow_record_batch.schema());
let arrays = arrow_record_batch.columns();
let mut value_offsets = None;
// Find value offsets from the first col in collapsible_cols_idx.
if let Some(idx) = self.collapsible_cols_idx.first() {
let array_data = arrays[*idx as usize].to_data();
let offset_slices = array_data.buffers()[0].as_slice();
value_offsets = Some(Self::get_array_offsets(offset_slices));
} else {
CollapsibleColsIdxEmpty.fail()?;
}
let value_offsets = value_offsets.unwrap();
let arrays = arrays
.iter()
.map(|array_ref| {
let data_type = array_ref.data_type();
match data_type {
// TODO:
// 1. we assume the datatype inside the List is primitive now
// Ensure this when create table
// 2. Although nested structure isn't support now, but may will someday in
// future. So We should keep metadata about which columns
// are collapsed by hybrid storage format, to differentiate
// List column in original records
DataType::List(_nested_field) => {
Ok(make_array(array_ref.to_data().child_data()[0].clone()))
}
_ => {
let datum_kind = DatumKind::from_data_type(data_type).unwrap();
match datum_kind.size() {
None => Self::stretch_variable_length_column(array_ref, &value_offsets),
Some(value_size) => Self::stretch_fixed_length_column(
array_ref,
value_size,
&value_offsets,
),
}
}
}
})
.collect::<Result<Vec<_>>>()?;
ArrowRecordBatch::try_new(new_arrow_schema, arrays)
.box_err()
.context(EncodeRecordBatch)
}
}
pub struct ParquetDecoder {
record_decoder: Box<dyn RecordDecoder>,
}
impl ParquetDecoder {
pub fn new(collapsible_cols_idx: &[u32]) -> Self {
let record_decoder: Box<dyn RecordDecoder> = if collapsible_cols_idx.is_empty() {
Box::new(ColumnarRecordDecoder {})
} else {
Box::new(HybridRecordDecoder {
collapsible_cols_idx: collapsible_cols_idx.to_vec(),
})
};
Self { record_decoder }
}
pub fn decode_record_batch(
&self,
arrow_record_batch: ArrowRecordBatch,
) -> Result<ArrowRecordBatch> {
self.record_decoder.decode(arrow_record_batch)
}
}
#[cfg(test)]
mod tests {
use std::{pin::Pin, sync::Mutex, task::Poll};
use arrow::array::{Int32Array, StringArray, TimestampMillisecondArray, UInt64Array};
use bytes_ext::Bytes;
use common_types::{
column_schema,
schema::{Builder, Schema, TSID_COLUMN},
time::{TimeRange, Timestamp},
};
use parquet::arrow::arrow_reader::ParquetRecordBatchReaderBuilder;
use pin_project_lite::pin_project;
use super::*;
fn build_schema() -> Schema {
Builder::new()
.auto_increment_column_id(true)
.add_key_column(
column_schema::Builder::new(TSID_COLUMN.to_string(), DatumKind::UInt64)
.build()
.unwrap(),
)
.unwrap()
.add_key_column(
column_schema::Builder::new("timestamp".to_string(), DatumKind::Timestamp)
.build()
.unwrap(),
)
.unwrap()
.add_normal_column(
column_schema::Builder::new("host".to_string(), DatumKind::String)
.is_tag(true)
.build()
.unwrap(),
)
.unwrap()
.add_normal_column(
column_schema::Builder::new("region".to_string(), DatumKind::String)
.is_tag(true)
.build()
.unwrap(),
)
.unwrap()
.add_normal_column(
column_schema::Builder::new("value".to_string(), DatumKind::Int32)
.build()
.unwrap(),
)
.unwrap()
.add_normal_column(
column_schema::Builder::new("string_value".to_string(), DatumKind::String)
.build()
.unwrap(),
)
.unwrap()
.build()
.unwrap()
}
fn string_array(values: Vec<Option<&str>>) -> ArrayRef {
Arc::new(StringArray::from(values))
}
fn int32_array(values: Vec<Option<i32>>) -> ArrayRef {
Arc::new(Int32Array::from(values))
}
fn timestamp_array(values: Vec<i64>) -> ArrayRef {
Arc::new(TimestampMillisecondArray::from(values))
}
#[test]
fn stretch_int32_column() {
let testcases = [
// (input, value_offsets, expected)
(
vec![Some(1), Some(2)],
vec![0, 2, 4],
vec![Some(1), Some(1), Some(2), Some(2)],
),
(
vec![Some(1), None, Some(2)],
vec![0, 2, 4, 5],
vec![Some(1), Some(1), None, None, Some(2)],
),
];
for (input, value_offsets, expected) in testcases {
let input = int32_array(input);
let expected = int32_array(expected);
let actual = HybridRecordDecoder::stretch_fixed_length_column(
&input,
std::mem::size_of::<i32>(),
&value_offsets,
)
.unwrap();
assert_eq!(
actual.as_any().downcast_ref::<Int32Array>().unwrap(),
expected.as_any().downcast_ref::<Int32Array>().unwrap(),
);
}
}
#[test]
fn stretch_string_column() {
let testcases = [
// (input, value_offsets, values_num, expected)
//
// value with same length
(
vec![Some("a"), Some("b"), Some("c")],
vec![0, 3, 5, 6],
vec![
Some("a"),
Some("a"),
Some("a"),
Some("b"),
Some("b"),
Some("c"),
],
),
// value with different length
(
vec![Some("hello"), Some("ceresdb")],
vec![0, 1, 3],
vec![Some("hello"), Some("ceresdb"), Some("ceresdb")],
),
// value with none
(
vec![None, None, Some("hello"), None],
vec![0, 1, 3, 4, 5],
vec![None, None, None, Some("hello"), None],
),
];
for (input, value_offsets, expected) in testcases {
let input = string_array(input);
let expected = string_array(expected);
let actual =
HybridRecordDecoder::stretch_variable_length_column(&input, &value_offsets)
.unwrap();
assert_eq!(
actual.as_any().downcast_ref::<StringArray>().unwrap(),
expected.as_any().downcast_ref::<StringArray>().unwrap(),
);
}
}
fn collect_collapsible_cols_idx(schema: &Schema, collapsible_cols_idx: &mut Vec<u32>) {
for (idx, _col) in schema.columns().iter().enumerate() {
if schema.is_collapsible_column(idx) {
collapsible_cols_idx.push(idx as u32);
}
}
}
pin_project! {
struct CopiedBuffer {
#[pin]
buffer: Vec<u8>,
copied_buffer: Arc<Mutex<Vec<u8>>>,
}
}
impl CopiedBuffer {
fn new(buffer: Vec<u8>) -> Self {
Self {
buffer,
copied_buffer: Arc::new(Mutex::new(Vec::new())),
}
}
fn copied_buffer(&self) -> Arc<Mutex<Vec<u8>>> {
self.copied_buffer.clone()
}
}
impl AsyncWrite for CopiedBuffer {
fn poll_write(