-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
336 lines (276 loc) · 13.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from model import *
from data_preprocessing import *
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from torch import optim
from torch.utils.data import DataLoader, Dataset
from transformers import BertConfig
import os
import copy
import numpy as np
import argparse
import pytorch_lightning as pl
MAX_LEN = 1000
MASK_WORD = [1,0,1,1,1,1]
class DealDataset(Dataset):
def __init__(self, x_data, mask_data, y_data, performer):
self.x_data = x_data
self.mask_data = mask_data
self.y_data = y_data
self.performer = performer
self.len = x_data.shape[0]
def __getitem__(self, index):
return self.x_data[index], self.mask_data[index], self.y_data[index], self.performer[index]
def __len__(self):
return self.len
def data_loader(data_X, data_mask, data_y, data_performer, shuffle=True):
data = DealDataset(data_X, data_mask, data_y, data_performer)
loader = DataLoader(dataset=data,
batch_size=16,
shuffle=shuffle,
num_workers=4,
pin_memory=True)
return loader
class DataModule(pl.LightningDataModule):
def __init__(self, data=None, verbose=True):
super().__init__()
self.data = data
self.verbose = verbose
def train_dataloader(self):
return data_loader(self.data['x_train'], self.data['mask_train'], self.data['y_train'], self.data['performer_train'])
def val_dataloader(self):
return data_loader(self.data['x_valid'], self.data['mask_valid'], self.data['y_valid'], self.data['performer_valid'], False)
def __repr__(self):
return (f'Dataset(root="{self.root}", '
f'samples={len(self.samples)}, '
f'avglen={self.avglen})')
class CosineWarmupScheduler(optim.lr_scheduler._LRScheduler):
def __init__(self, optimizer, warmup, max_iters):
self.warmup = warmup
self.max_num_iters = max_iters
super().__init__(optimizer)
def get_lr(self):
lr_factor = self.get_lr_factor(epoch=self.last_epoch)
return [base_lr * lr_factor for base_lr in self.base_lrs]
def get_lr_factor(self, epoch):
lr_factor = 0.5 * (1 + np.cos(np.pi * epoch / self.max_num_iters))
if epoch <= self.warmup:
lr_factor *= epoch * 1.0 / self.warmup
return lr_factor
class MyLightningModule(pl.LightningModule):
def __init__(self,
model,
learning_rate=1e-4,
weight_decay=1e-7):
super().__init__()
self.save_hyperparameters()
self.automatic_optimization = False
self.model = model
self.midibert = model.midibert
self.loss_fn = nn.CrossEntropyLoss(reduction='none')
self.loss_mse = nn.L1Loss(reduction="none")
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.Weightloss1 = torch.tensor(1.0, requires_grad=True).to(self.device)
self.Weightloss2 = torch.tensor(1.0, requires_grad=True).to(self.device)
self.Weightloss3 = torch.tensor(1.0, requires_grad=True).to(self.device)
self.params = [self.Weightloss1, self.Weightloss2, self.Weightloss3]
def forward(self, x, attn_masks, performers):
return self.model(x, attn_masks, performers)
def configure_optimizers(self):
optimizer = optim.Adam(self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
optimizer_weights = optim.Adam(self.params, lr=0.001)
self.lr_scheduler = CosineWarmupScheduler(optimizer=optimizer, warmup=3000, max_iters=12000)
return optimizer, optimizer_weights
def compute_loss(self, predict, target, loss_mask):
idx = [1,2,5]
all_loss = []
for i in range(3):
zero_index = torch.where(target[:,:,idx[i]].float() == 0)
target_values = target[:,:,idx[i]].float()
target_values[target_values == 0] = 1
loss = self.loss_mse(predict[i].squeeze(), target[:,:,idx[i]].float())
loss = loss * loss_mask[:, :, idx[i]]
new_mask = torch.ones_like(loss)
new_mask[zero_index] = new_mask[zero_index] * 1e-3
loss = loss * new_mask
loss = loss / torch.abs(target_values)
loss = torch.sum(loss, dim=-1) / torch.sum(loss_mask[:,:,idx[i]])
all_loss.append(loss)
total_loss = [x.sum() for x in all_loss]
return torch.stack(total_loss)
def compute_accuracy(self, predict, target, loss_mask):
temp = []
for i in range(3):
temp.append(torch.round(predict[i].squeeze()))
temp = torch.stack(temp, dim = -1)
if len(temp.shape) == 2:
temp = temp[None]
all_acc = []
idx = [1,2,5]
for i in range(3):
acc = torch.sum((temp[:,:,i] == target[:,:,idx[i]]).float() * loss_mask[:,:,idx[i]])
acc /= torch.sum(loss_mask[:,:,idx[i]])
all_acc.append(acc)
total_acc = [x.sum() for x in all_acc]
return total_acc
def get_mask_ind(self):
mask_ind = random.sample([i for i in range(MAX_LEN)], round(MAX_LEN))
mask50 = random.sample(mask_ind, round(len(mask_ind)*0.8))
left = list((set(mask_ind) - set(mask50)))
rand25 = random.sample(left, round(len(mask_ind)*0.2))
cur25= list(set(left)-set(rand25))
return mask50, rand25, cur25
def create_masks(self, inputs):
mask50, rand25, cur25 = self.get_mask_ind()
input_seqs = copy.deepcopy(inputs)
self.loss_mask = torch.ones(inputs.shape)
for b in range(input_seqs.shape[0]):
for i in mask50:
mask_word = torch.tensor(MASK_WORD).to(self.device)
input_seqs[b][i] *= mask_word
for i in rand25:
rand_word = torch.tensor(self.midibert.get_rand_tok()).to(self.device)
input_seqs[b][i][1] = rand_word
self.loss_mask = self.loss_mask.to(self.device)
return input_seqs.long()
def training_step(self, batch, batch_idx):
inputs, masks, targets, performers = batch
inputs = inputs[..., [0,1,2,3,4,6]]
targets = targets[..., [0,1,2,3,4,6]]
inputs_masked = self.create_masks(inputs)
outputs = self(inputs_masked, masks, performers)
acces = self.compute_accuracy(outputs, targets, self.loss_mask)
losses = self.compute_loss(outputs, targets, self.loss_mask)
opt, opt_w = self.optimizers()
if self.global_step == 0:
# init weights
self.T = torch.sum(torch.tensor(self.params)).detach() # sum of weights
self.l0 = losses.detach()
weighted_loss = (self.params[0] * losses[0] \
+ self.params[1] * losses[1] \
+ self.params[2] * losses[2])/torch.sum(torch.tensor(self.params))
# clear gradients of network
opt.zero_grad()
# backward pass for weigthted task
self.manual_backward(weighted_loss, retain_graph=True)
# compute the L2 norm of the gradients for each task
gw = []
for i in range(len(losses)):
with torch.autograd.set_detect_anomaly(True):
dl = torch.autograd.grad(self.params[i]*losses[i],
self.model.mask_lm.proj[i].parameters(),
retain_graph=True, create_graph=True)[0]
gw.append(torch.norm(dl))
gw = torch.stack(gw)
# compute loss ratio per task
loss_ratio = losses.detach() / self.l0
# compute the relative inverse training rate per task
rt = loss_ratio / loss_ratio.mean()
# compute the average gradient norm
gw_avg = gw.mean().detach()
# compute the GradNorm loss
constant = (gw_avg * rt ** 0.16).detach()
gradnorm_loss = torch.abs(gw - constant).sum()
# clear gradients of weights
opt_w.zero_grad()
# backward pass for GradNorm
self.manual_backward(gradnorm_loss)
# gradnorm_loss.backward()
# update model weights
opt.step()
self.lr_scheduler.step()
# update loss weights
opt_w.step()
# renormalize weights
coef = 3 / (self.Weightloss1 + self.Weightloss2 + self.Weightloss3)
self.params = [coef*self.Weightloss1,
coef*self.Weightloss2,
coef*self.Weightloss3]
accuracy = (acces[0] + acces[1] + acces[2])/3
self.log('loss_weight', {'velocity_weight': self.Weightloss1,
'duration_weight': self.Weightloss2,
'ioi_weight': self.Weightloss3
}, on_epoch=True, prog_bar=False, on_step=False)
self.log('train_loss', {"loss": weighted_loss,
'velocity_loss': losses[0],
'duration_loss': losses[1],
'ioi_loss': losses[2],
}, on_epoch=True, prog_bar=False, on_step=False)
self.log('train_acc', {"accuracy": accuracy,
'velocity_acc': acces[0],
'duration_acc': acces[1],
'ioi_acc': acces[2]
}, on_epoch=True, prog_bar=False, on_step=False)
return
def validation_step(self, batch, batch_idx):
inputs, masks, targets, performers = batch
inputs = inputs[..., [0,1,2,3,4,6]]
targets = targets[..., [0,1,2,3,4,6]]
inputs_masked = self.create_masks(inputs)
outputs = self(inputs_masked, masks, performers)
acces = self.compute_accuracy(outputs, targets, self.loss_mask)
losses = self.compute_loss(outputs, targets, self.loss_mask)
weighted_loss = (self.params[0] * losses[0] \
+ self.params[1] * losses[1] \
+ self.params[2] * losses[2])/torch.sum(torch.tensor(self.params))
accuracy = (acces[0] + acces[1] + acces[2])/3
self.log('val_loss', weighted_loss, on_epoch=True, prog_bar=True, on_step=False, sync_dist=True)
self.log('val_acc', accuracy, on_epoch=True, prog_bar=True, on_step=False, sync_dist=True)
return
def get_args():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--max_seq_len', type=int, default=MAX_LEN, help='all sequences are padded to `max_seq_len`')
parser.add_argument('--hs', type=int, default=128) # hidden state
parser.add_argument('--epochs', type=int, default=1000, help='number of training epochs')
parser.add_argument('--lr', type=float, default=1e-4, help='initial learning rate')
parser.add_argument('--ckpt_path', type=str, default=None)
parser.add_argument('--log_path', type=str, default="wb_logs/S2PBert")
parser.add_argument('--version', type=int, default=0)
parser.add_argument("--cuda_devices", nargs='+', default=["4","0"], help="CUDA device ids")
args = parser.parse_args()
return args
def train(args):
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(args.cuda_devices)
# Choose training data
data_path = os.path.join("data/s2p_data_bee_dev_ioi_new.npz")
data = np.load(data_path)
# Set logger and checkpoint paths.
logger = WandbLogger(project="S2P", name="s2p_dev_gradnorm_ioi_final", log_model=True)
checkpoint_callback = ModelCheckpoint(monitor="val_loss", mode="min", save_last=True)
lr_monitor = LearningRateMonitor(logging_interval="step")
configuration = BertConfig(
max_position_embeddings=args.max_seq_len,
position_embedding_type='relative_key_query',
hidden_size=args.hs,
num_hidden_layers=4,
precision = 16,
num_attention_heads=4,
intermediate_size=128,
)
torch.set_float32_matmul_precision('high')
bertmodel = MidiBert(configuration)
mymodel = MidiBertLM(bertmodel)
model = MyLightningModule(mymodel)
if args.ckpt_path != None:
model = model.load_from_checkpoint(args.ckpt_path)
print(data['x_train'].shape, data['mask_train'].shape, data['y_train'].shape)
print("loading data ...")
datamodule = DataModule(data)
# trainer = pl.Trainer(gpus=1, fast_dev_run=True)
# trainer.fit(model, datamodule)
print("initiating moodel ...")
trainer = pl.Trainer(max_epochs=args.epochs,
logger=logger,
gpus=2,
strategy="ddp",
enable_progress_bar=True,
log_every_n_steps=10,
callbacks=[checkpoint_callback, lr_monitor])
print("start training moodel ...")
trainer.fit(model, datamodule=datamodule)
if __name__ == "__main__":
args = get_args()
train(args)