-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate_a_set_of_videos.py
119 lines (92 loc) · 3.66 KB
/
evaluate_a_set_of_videos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import argparse
import os
import pickle as pkl
import decord
import numpy as np
import yaml
from tqdm import tqdm
from cover.datasets import (
UnifiedFrameSampler,
ViewDecompositionDataset,
spatial_temporal_view_decomposition,
)
from cover.models import COVER
mean, std = (
torch.FloatTensor([123.675, 116.28, 103.53]),
torch.FloatTensor([58.395, 57.12, 57.375]),
)
mean_clip, std_clip = (
torch.FloatTensor([122.77, 116.75, 104.09]),
torch.FloatTensor([68.50, 66.63, 70.32])
)
def fuse_results(results: list):
x = (results[0] + results[1] + results[2])
return {
"semantic" : results[0],
"technical": results[1],
"aesthetic": results[2],
"overall" : x,
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("-o", "--opt" , type=str, default="./cover.yml", help="the option file")
parser.add_argument('-d', "--device", type=str, default="cuda" , help='CUDA device id')
parser.add_argument("-i", "--input_video_dir", type=str, default="./demo", help="the input video dir")
parser.add_argument( "--output", type=str, default="./demo.csv" , help='output file to store predict mos value')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
with open(args.opt, "r") as f:
opt = yaml.safe_load(f)
### Load COVER
evaluator = COVER(**opt["model"]["args"]).to(args.device)
state_dict = torch.load(opt["test_load_path"], map_location=args.device)
# set strict=False here to avoid error of missing
# weight of prompt_learner in clip-iqa+, cross-gate
evaluator.load_state_dict(state_dict['state_dict'], strict=False)
video_paths = []
all_results = {}
with open(args.output, "w") as w:
w.write(f"path, semantic score, technical score, aesthetic score, overall/final score\n")
dopt = opt["data"]["val-l1080p"]["args"]
dopt["anno_file"] = None
dopt["data_prefix"] = args.input_video_dir
dataset = ViewDecompositionDataset(dopt)
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=1, num_workers=opt["num_workers"], pin_memory=True,
)
sample_types = ["semantic", "technical", "aesthetic"]
for i, data in enumerate(tqdm(dataloader, desc="Testing")):
if len(data.keys()) == 1:
## failed data
continue
video = {}
for key in sample_types:
if key in data:
video[key] = data[key].to(args.device)
b, c, t, h, w = video[key].shape
video[key] = (
video[key]
.reshape(
b, c, data["num_clips"][key], t // data["num_clips"][key], h, w
)
.permute(0, 2, 1, 3, 4, 5)
.reshape(
b * data["num_clips"][key], c, t // data["num_clips"][key], h, w
)
)
with torch.no_grad():
results = evaluator(video, reduce_scores=False)
results = [np.mean(l.cpu().numpy()) for l in results]
rescaled_results = fuse_results(results)
# all_results[data["name"][0]] = rescaled_results
# with open(
# f"cover_predictions/val-custom_{args.input_video_dir.split('/')[-1]}.pkl", "wb"
# ) as wf:
# pkl.dump(all_results, wf)
with open(args.output, "a") as w:
w.write(
f'{data["name"][0].split("/")[-1]},{rescaled_results["semantic"]:4f},{rescaled_results["technical"]:4f},{rescaled_results["aesthetic"]:4f},{rescaled_results["overall"]:4f}\n'
)