-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathviscoelastic_2d_ssg+cfd_cpml.jl
208 lines (150 loc) · 4.99 KB
/
viscoelastic_2d_ssg+cfd_cpml.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
using Plots;
using Base.Threads;
using LoopVectorization;
using ProgressBars;
Threads.nthreads() = 8
# viscoelastic params
τP =0
τS = 0
τ =1
# τP = 0.353
# τS = 0.352
# τ = 0.351
#initial velocities
vp = 2955.0
vs = 2362.0
# density
ρ = 7100.0
# lame params
μ = ρ * vs * vs
λ = ρ * vp * vp - 2 * μ
# Настройки сетки
Lx = 3005 # m
Ly = 3005 # m
Nx = 601 # points
Ny = 601 # points
dx = Lx / Nx # m
dy = Ly / Ny # m
# Настройки временной сетки
T = 1 # sec
dt = 0.6e-3
Nt = trunc(Int, T / dt)
# Nt = 1000
# dt = T / Nt
@assert vp * dt * sqrt(1/dx^2 + 1/dy^2) < 1 "no stability"
vx = zeros(Nx, Ny)
vy = zeros(Nx, Ny)
pxx = zeros(Nx, Ny)
pyy = zeros(Nx, Ny)
pxy = zeros(Nx, Ny)
rxx = zeros(Nx, Ny)
ryy = zeros(Nx, Ny)
rxy = zeros(Nx, Ny)
p1P = (λ + 2 * μ) * (1 + τP)
p1S = μ * (1 + τS)
p1d = p1P - 2 * p1S
p2P = (λ + 2 * μ) * τP
p2S = μ * τS
p2d = p2P - 2 * p2S
fm = 40# for ricker wavelet
ricker_wavelet(t) = (1. - 2 * pi^2 * fm^2 * t^2) * exp(-pi^2 * fm^2 * t^2)
micro_coord = [Nx ÷ 2, Ny ÷ 2]
micro_data = zeros(Nt)
# PML настрйока
Npml = 40 # толщина PML слоя
ψ_vx_x = zeros(Nx, Ny)
ψ_vy_x = zeros(Nx, Ny)
ψ_vx_y = zeros(Nx, Ny)
ψ_vy_y = zeros(Nx, Ny)
ψ_pxx_x = zeros(Nx, Ny)
ψ_pxy_x = zeros(Nx, Ny)
ψ_pxy_y = zeros(Nx, Ny)
ψ_pyy_y = zeros(Nx, Ny)
κx = ones(Nx)
bx = zeros(Nx)
ax = zeros(Nx)
κy = ones(Ny)
by = zeros(Ny)
ay = zeros(Ny)
κmax = 7
αmax = pi * fm
Rc = 0.0001 / 100
d0 = - 3 * vp * log(Rc) / 2 / Npml
#d0 = 3000
@show d0
for i in 1:Npml
pdx = d0 * (1.0 - (i - 1.0)/ Npml)^2
αx = αmax * ((i - 1) / Npml)^2
κx[i] = 1.0 + (κmax - 1) * (1.0 - (i - 1.0)/ Npml)^2
bx[i] = exp(-(pdx / κx[i] + αx) * dt)
ax[i] = (bx[i] - 1) * pdx / (κx[i] * (pdx + κx[i] * αx))
κx[Nx - i + 1] = κx[i]
bx[Nx - i + 1] = bx[i]
ax[Nx - i + 1] = ax[i]
κy[i] = κx[i]
by[i] = bx[i]
ay[i] = ax[i]
κy[Ny - i + 1] = κx[i]
by[Ny - i + 1] = bx[i]
ay[Ny - i + 1] = ax[i]
end
@gif for n in ProgressBar(1:Nt)
# update stresses
@tturbo for i in 2:Nx
for j in 2:Ny
vxx = 0
vyy = 0
vxx += (vx[i, j] - vx[i - 1, j]) / dx
vyy += (vy[i, j] - vy[i, j - 1]) / dy
ψ_vx_x[i, j] = bx[i] * ψ_vx_x[i, j] + ax[i] * vxx
ψ_vy_y[i, j] = by[j] * ψ_vy_y[i, j] + ay[j] * vyy
pxx[i, j] = pxx[i, j] + dt * (p1P * (vxx / κx[i] + ψ_vx_x[i, j]) + p1d * (vyy / κy[j] + ψ_vy_y[i, j]) + 0.5 * rxx[i, j])
pyy[i, j] = pyy[i, j] + dt * (p1d * (vxx / κx[i] + ψ_vx_x[i, j]) + p1P * (vyy / κy[j] + ψ_vy_y[i, j]) + 0.5 * ryy[i, j])
rxx[i, j] = - 1. / (τ + 0.5 * dt) * (τ * rxx[i, j] + dt * (p2P * (vxx / κx[i] + ψ_vx_x[i, j]) + p2d * (vyy / κy[j] + ψ_vy_y[i, j]) + 0.5 * rxx[i, j]))
ryy[i, j] = - 1. / (τ + 0.5 * dt) * (τ * ryy[i, j] + dt * (p2d * (vxx / κx[i] + ψ_vx_x[i, j]) + p2P * (vyy / κy[j] + ψ_vy_y[i, j]) + 0.5 * ryy[i, j]))
pxx[i, j] += 0.5 * dt * rxx[i, j]
pyy[i, j] += 0.5 * dt * ryy[i, j]
end
end
@tturbo for i in 1:Nx-1
for j in 1:Ny-1
vyx = (vy[i + 1, j] - vy[i, j]) /dx
vxy = (vx[i, j + 1] - vx[i, j]) /dy
ψ_vy_x[i, j] = (bx[i+1] + bx[i]) / 2 * ψ_vy_x[i, j] + (ax[i+1] + ax[i]) / 2 * vyx
ψ_vx_y[i, j] = (by[j+1] + by[j]) / 2 * ψ_vx_y[i, j] + (ay[j+1] + ay[j]) / 2 * vxy
pxy[i, j] = pxy[i, j] + dt * (p1S * (vyx / κx[i] + ψ_vy_x[i, j]) + p1S * (vxy / κy[j] + ψ_vx_y[i, j]) + 0.5 * rxy[i, j])
rxy[i, j] = - 1. / (τ + 0.5 * dt) * (τ * rxy[i, j] + dt * (p2S * (vyx / κx[i] + ψ_vy_x[i, j]) + p2S * (vxy / κy[j] + ψ_vx_y[i, j]) + 0.5 * rxy[i, j]))
pxy[i, j] += 0.5 * dt * rxy[i, j]
end
end
# update particle velocities
@tturbo for i in 1:Nx-1
for j in 2:Ny-1
pxx_x = (pxx[i + 1, j] - pxx[i, j ]) / dx
pxy_y = (pxy[i, j] - pxy[i , j - 1]) /dy
ψ_pxx_x[i, j] = (bx[i+1] + bx[i]) / 2 * ψ_pxx_x[i, j] + (ax[i+1] + ax[i]) / 2 * pxx_x
ψ_pxy_y[i, j] = by[j] * ψ_pxy_y[i, j] + ay[j] * pxy_y
vx[i, j] = vx[i, j] + dt / ρ * (pxx_x / κx[i] + ψ_pxx_x[i, j] + pxy_y / κy[j] + ψ_pxy_y[i, j])
end
end
@tturbo for i in 2:Nx
for j in 1:Ny-1
pyy_y = (pyy[i, j + 1] - pyy[i , j]) / dy
pxy_x = (pxy[i, j] - pxy[i - 1, j]) / dx
ψ_pxy_x[i, j] = bx[i] * ψ_pxy_x[i, j] + ax[i] * pxy_x
ψ_pyy_y[i, j] = (by[i+1] + by[i]) / 2 * ψ_pyy_y[i, j] + (ay[i+1] + ay[i]) / 2 * pyy_y
vy[i, j] = vy[i, j] + dt / ρ * (pxy_x / κx[i] + ψ_pxy_x[i, j] + pyy_y / κy[j] + ψ_pyy_y[i, j])
end
end
vx[1, :] .= 0
vx[Nx, :] .= 0
vx[:, 1] .= 0
vx[:, Ny] .= 0
vy[1, :] .= 0
vy[Nx, :] .= 0
vy[:, 1] .= 0
vy[:, Ny] .= 0
# add source wavelet
vy[Nx ÷ 2, Ny ÷ 2] = vy[Nx ÷ 2, Ny ÷ 2] + dt / ρ * ricker_wavelet(n * dt - 0.1)
heatmap(vy[:, :], framestyle = :box, aspect_ratio = :equal, xlabel = "X", ylabel = "Y", title = "Wave Propagation", color = :seismic, size = (900, 900), clim=(-dt / ρ / 20, dt / ρ / 20))
end every 10