-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_pretrain.py
executable file
·281 lines (226 loc) · 9.71 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import json
import os
import shutil
import time
from shutil import copyfile
import torch
import torch.distributed as dist
from torch.backends import cudnn
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
import torchvision
from contrast import models
from contrast import resnet
from contrast.data import get_loader
from contrast.logger import setup_logger
from contrast.option import parse_option
from contrast.util import AverageMeter, cosine_scheduler
from contrast.lars import add_weight_decay, LARS
from contrast.loss import TripletLoss
def build_model(args, init_lr):
encoder = resnet.__dict__[args.arch]
model = models.__dict__[args.model](encoder, args).cuda()
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(
model.parameters(),
lr=init_lr,
momentum=args.momentum,
weight_decay=args.weight_decay,)
elif args.optimizer == 'lars':
params = add_weight_decay(model, args.weight_decay)
optimizer = torch.optim.SGD(
params,
lr=init_lr,
momentum=args.momentum,)
optimizer = LARS(optimizer)
else:
raise NotImplementedError
model = DistributedDataParallel(
model, device_ids=[args.local_rank], broadcast_buffers=False)
return model, optimizer
def load_pretrained(model, pretrained_model):
ckpt = torch.load(pretrained_model, map_location='cpu')
state_dict = ckpt['model']
model_dict = model.state_dict()
model_dict.update(state_dict)
model.load_state_dict(model_dict)
logger.info(
f"==> loaded checkpoint '{pretrained_model}' (epoch {ckpt['epoch']})")
def load_checkpoint(args, model, optimizer, scaler, sampler=None):
logger.info(f"=> loading checkpoint '{args.resume}'")
checkpoint = torch.load(args.resume, map_location='cpu')
args.start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
scaler.load_state_dict(checkpoint['scaler'])
logger.info(
f"=> loaded successfully '{args.resume}' (epoch {checkpoint['epoch']})")
del checkpoint
torch.cuda.empty_cache()
def save_checkpoint(args, epoch, model, optimizer, scaler, sampler=None):
logger.info('==> Saving...')
state = {
'opt': args,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scaler': scaler.state_dict(),
'epoch': epoch,
}
file_name = os.path.join(args.output_dir, f'ckpt_epoch_{epoch}.pth')
torch.save(state, file_name)
copyfile(file_name, os.path.join(args.output_dir, 'current.pth'))
def main(args):
train_prefix = 'train'
train_loader = get_loader(
args.aug, args,
two_crop=args.model in ['CLoVE'],
prefix=train_prefix,
return_coord=True,)
args.num_instances = len(train_loader.dataset)
logger.info(f"length of training dataset: {args.num_instances}")
# ============ init schedulers ============
global_learning_rate = args.batch_size * dist.get_world_size() / 256 * \
args.base_learning_rate * args.grad_accumulation_steps
logger.info(f"global learning rate: {global_learning_rate}")
lr_schedule = cosine_scheduler(
global_learning_rate, # linear scaling rule
global_learning_rate * 0.01,
args.epochs, len(train_loader),
warmup_epochs=args.warmup_epoch,
start_warmup_value=global_learning_rate / args.warmup_multiplier
)
# momentum parameter is increased to 1. during training with a cosine schedule
momentum_schedule = cosine_scheduler(args.clove_momentum, 1.0,
args.epochs, len(train_loader))
logger.info(f"initial learning rate: {lr_schedule[0]}")
model, optimizer = build_model(args, init_lr=lr_schedule[0])
# tensorboard
scaler = torch.cuda.amp.GradScaler()
# optionally resume from a checkpoint
if args.pretrained_model:
assert os.path.isfile(args.pretrained_model)
load_pretrained(model, args.pretrained_model)
if args.auto_resume:
resume_file = os.path.join(args.output_dir, "current.pth")
if os.path.exists(resume_file):
logger.info(f'auto resume from {resume_file}')
args.resume = resume_file
else:
logger.info(
f'no checkpoint found in {args.output_dir}, ignoring auto resume')
if args.resume:
assert os.path.isfile(args.resume)
load_checkpoint(args, model, optimizer, scaler,
sampler=train_loader.sampler)
# tensorboard
if dist.get_rank() == 0:
summary_writer = SummaryWriter(log_dir=args.output_dir)
else:
summary_writer = None
triplet_loss = TripletLoss(args.lamb, args.clove_pos_ratio).cuda()
torch.cuda.empty_cache()
for epoch in range(args.start_epoch, args.epochs + 1):
if isinstance(train_loader.sampler, DistributedSampler):
train_loader.sampler.set_epoch(epoch)
train(epoch, train_loader, model, optimizer, lr_schedule,
momentum_schedule, triplet_loss, args, scaler, summary_writer)
if dist.get_rank() == 0 and (epoch % args.save_freq == 0 or epoch == args.epochs):
save_checkpoint(args, epoch, model, optimizer,
scaler, sampler=train_loader.sampler)
def add_images_to_tensorboard(writer, iter, images, tag_name):
grid = torchvision.utils.make_grid(images.unsqueeze(1))
writer.add_image(tag_name, grid, iter, dataformats='CHW')
def train(epoch, train_loader, model, optimizer, lr_schedule, momentum_schedule, triplet_loss, args, scaler, summary_writer):
"""
one epoch training
"""
model.train()
batch_time = AverageMeter()
loss_meter = AverageMeter()
end = time.time()
for idx, data in enumerate(train_loader):
images = data[0]
coords = data[1]
images = [item.cuda(non_blocking=True) for item in images]
coords = [item.cuda(non_blocking=True) for item in coords]
step = (epoch - 1) * len(train_loader) + idx
# get learning rate and momentum
lr = lr_schedule[step]
m = momentum_schedule[step]
sync_gradients = ((idx + 1) % args.grad_accumulation_steps ==
0) or (idx + 1 == len(train_loader))
if not sync_gradients:
with model.no_sync():
with torch.cuda.amp.autocast(True):
gl_sa_maps, lo_sa_maps, gl_projs_ng, gl_sa_weights, lo_sa_weights = model(
images)
loss = triplet_loss(
gl_sa_maps.float(), lo_sa_maps.float(), gl_projs_ng.float(), coords)
loss /= args.grad_accumulation_steps
scaler.scale(loss).backward()
else:
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Gradients finally sync
with torch.cuda.amp.autocast(True):
gl_sa_maps, lo_sa_maps, gl_projs_ng, gl_sa_weights, lo_sa_weights = model(
images, m)
loss = triplet_loss(
gl_sa_maps.float(), lo_sa_maps.float(), gl_projs_ng.float(), coords)
loss /= args.grad_accumulation_steps
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
# update meters and print info
loss_meter.update(loss.item(), images[0].size(0))
batch_time.update(time.time() - end)
end = time.time()
train_len = len(train_loader)
if idx % args.print_freq == 0:
lr = optimizer.param_groups[0]['lr']
logger.info(
f'Train: [{epoch}/{args.epochs}][{idx}/{train_len}] '
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
f'lr {lr:.3f} '
f'loss {loss_meter.val:.3f} ({loss_meter.avg:.3f})')
# tensorboard logger
if summary_writer is not None:
summary_writer.add_scalar('metrics/m', m, step)
summary_writer.add_scalar('metrics/lr', lr, step)
summary_writer.add_scalar('loss/total', loss.item(), step)
add_images_to_tensorboard(
summary_writer, step, gl_sa_weights, "masks/gl_sa_weights")
add_images_to_tensorboard(
summary_writer, step, lo_sa_weights, "masks/lo_sa_weights")
if __name__ == '__main__':
opt = parse_option(stage='pre-train')
opt.local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(opt.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
cudnn.benchmark = True
# setup logger
os.makedirs(opt.output_dir, exist_ok=True)
logger = setup_logger(output=opt.output_dir,
distributed_rank=dist.get_rank(), name="contrast")
if dist.get_rank() == 0:
path = os.path.join(opt.output_dir, "config.json")
shutil.copyfile(
"./main_pretrain.py", os.path.join(opt.output_dir,
"main_pretrain.py")
)
shutil.copyfile(
"./contrast/models/CLoVE.py", os.path.join(
opt.output_dir, "CLoVE.py")
)
with open(path, 'w') as f:
json.dump(vars(opt), f, indent=2)
logger.info("Full config saved to {}".format(path))
# print args
logger.info(
"\n".join("%s: %s" % (k, str(v))
for k, v in sorted(dict(vars(opt)).items()))
)
main(opt)