|
| 1 | +import os |
| 2 | +import numpy as np |
| 3 | +from PIL import Image |
| 4 | +from keras.utils import Sequence |
| 5 | +#from skimage.io import imread |
| 6 | + |
| 7 | + |
| 8 | +def load_data(nr_of_channels, batch_size=1, nr_A_train_imgs=None, nr_B_train_imgs=None, |
| 9 | + nr_A_test_imgs=None, nr_B_test_imgs=None, subfolder='', |
| 10 | + generator=False, D_model=None, use_multiscale_discriminator=False, use_supervised_learning=False, REAL_LABEL=1.0): |
| 11 | + |
| 12 | + trainA_path = os.path.join('data', subfolder, 'trainA') |
| 13 | + trainB_path = os.path.join('data', subfolder, 'trainB') |
| 14 | + testA_path = os.path.join('data', subfolder, 'testA') |
| 15 | + testB_path = os.path.join('data', subfolder, 'testB') |
| 16 | + |
| 17 | + trainA_image_names = os.listdir(trainA_path) |
| 18 | + if nr_A_train_imgs != None: |
| 19 | + trainA_image_names = trainA_image_names[:nr_A_train_imgs] |
| 20 | + |
| 21 | + trainB_image_names = os.listdir(trainB_path) |
| 22 | + if nr_B_train_imgs != None: |
| 23 | + trainB_image_names = trainB_image_names[:nr_B_train_imgs] |
| 24 | + |
| 25 | + testA_image_names = os.listdir(testA_path) |
| 26 | + if nr_A_test_imgs != None: |
| 27 | + testA_image_names = testA_image_names[:nr_A_test_imgs] |
| 28 | + |
| 29 | + testB_image_names = os.listdir(testB_path) |
| 30 | + if nr_B_test_imgs != None: |
| 31 | + testB_image_names = testB_image_names[:nr_B_test_imgs] |
| 32 | + |
| 33 | + if generator: |
| 34 | + return data_sequence(trainA_path, trainB_path, trainA_image_names, trainB_image_names, batch_size=batch_size) # D_model, use_multiscale_discriminator, use_supervised_learning, REAL_LABEL) |
| 35 | + else: |
| 36 | + trainA_images = create_image_array(trainA_image_names, trainA_path, nr_of_channels) |
| 37 | + trainB_images = create_image_array(trainB_image_names, trainB_path, nr_of_channels) |
| 38 | + testA_images = create_image_array(testA_image_names, testA_path, nr_of_channels) |
| 39 | + testB_images = create_image_array(testB_image_names, testB_path, nr_of_channels) |
| 40 | + return {"trainA_images": trainA_images, "trainB_images": trainB_images, |
| 41 | + "testA_images": testA_images, "testB_images": testB_images, |
| 42 | + "trainA_image_names": trainA_image_names, |
| 43 | + "trainB_image_names": trainB_image_names, |
| 44 | + "testA_image_names": testA_image_names, |
| 45 | + "testB_image_names": testB_image_names} |
| 46 | + |
| 47 | + |
| 48 | +def create_image_array(image_list, image_path, nr_of_channels): |
| 49 | + image_array = [] |
| 50 | + for image_name in image_list: |
| 51 | + if image_name[-1].lower() == 'g': # to avoid e.g. thumbs.db files |
| 52 | + if nr_of_channels == 1: # Gray scale image -> MR image |
| 53 | + image = np.array(Image.open(os.path.join(image_path, image_name))) |
| 54 | + image = image[:, :, np.newaxis] |
| 55 | + else: # RGB image -> 3 channels |
| 56 | + image = np.array(Image.open(os.path.join(image_path, image_name))) |
| 57 | + image = normalize_array(image) |
| 58 | + image_array.append(image) |
| 59 | + |
| 60 | + return np.array(image_array) |
| 61 | + |
| 62 | + |
| 63 | +def normalize_array(array): |
| 64 | + max_value = max(array.flatten()) |
| 65 | + array = array / max_value |
| 66 | + return array |
| 67 | + |
| 68 | + |
| 69 | +class data_sequence(Sequence): |
| 70 | + |
| 71 | + def __init__(self, trainA_path, trainB_path, image_list_A, image_list_B, batch_size=1): # , D_model, use_multiscale_discriminator, use_supervised_learning, REAL_LABEL): |
| 72 | + self.batch_size = batch_size |
| 73 | + self.train_A = [] |
| 74 | + self.train_B = [] |
| 75 | + for image_name in image_list_A: |
| 76 | + if image_name[-1].lower() == 'g': # to avoid e.g. thumbs.db files |
| 77 | + self.train_A.append(os.path.join(trainA_path, image_name)) |
| 78 | + for image_name in image_list_B: |
| 79 | + if image_name[-1].lower() == 'g': # to avoid e.g. thumbs.db files |
| 80 | + self.train_B.append(os.path.join(trainB_path, image_name)) |
| 81 | + |
| 82 | + def __len__(self): |
| 83 | + return int(max(len(self.train_A), len(self.train_B)) / float(self.batch_size)) |
| 84 | + |
| 85 | + def __getitem__(self, idx): # , use_multiscale_discriminator, use_supervised_learning):if loop_index + batch_size >= min_nr_imgs: |
| 86 | + if idx >= min(len(self.train_A), len(self.train_B)): |
| 87 | + # If all images soon are used for one domain, |
| 88 | + # randomly pick from this domain |
| 89 | + if len(self.train_A) <= len(self.train_B): |
| 90 | + indexes_A = np.random.randint(len(self.train_A), size=self.batch_size) |
| 91 | + batch_A = [] |
| 92 | + for i in indexes_A: |
| 93 | + batch_A.append(self.train_A[i]) |
| 94 | + batch_B = self.train_B[idx * self.batch_size:(idx + 1) * self.batch_size] |
| 95 | + else: |
| 96 | + indexes_B = np.random.randint(len(self.train_B), size=self.batch_size) |
| 97 | + batch_B = [] |
| 98 | + for i in indexes_B: |
| 99 | + batch_B.append(self.train_B[i]) |
| 100 | + batch_A = self.train_A[idx * self.batch_size:(idx + 1) * self.batch_size] |
| 101 | + else: |
| 102 | + batch_A = self.train_A[idx * self.batch_size:(idx + 1) * self.batch_size] |
| 103 | + batch_B = self.train_B[idx * self.batch_size:(idx + 1) * self.batch_size] |
| 104 | + |
| 105 | + real_images_A = create_image_array(batch_A, '', 3) |
| 106 | + real_images_B = create_image_array(batch_B, '', 3) |
| 107 | + |
| 108 | + return real_images_A, real_images_B # input_data, target_data |
| 109 | + |
| 110 | + |
| 111 | +if __name__ == '__main__': |
| 112 | + load_data() |
0 commit comments