-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStreamlit.py
52 lines (42 loc) · 1.64 KB
/
Streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 06 09:43:59 2021
@author: shubham
"""
import numpy as np
import pickle
import pandas as pd
import streamlit as st
from PIL import Image
pickle_in = open("model_poly.pkl","rb")
classifier=pickle.load(pickle_in)
def welcome():
return "Welcome ALL"
def predict_bankruptcy(industrial_risk,management_risk,financial_flexibility,credibility,competitiveness,operating_risk):
prediction=classifier.predict([[industrial_risk,management_risk,financial_flexibility,credibility,competitiveness,operating_risk]])
print(prediction)
return prediction
def main():
st.title("Bankruptcy Detector")
html_temp = """
<div style="background-color:tomato;padding:10px">
<h2 style="color:white;text-align:center;">Streamlit Bankruptcy Detector ML App </h2>
</div>
"""
st.markdown(html_temp,unsafe_allow_html=True)
industrial_risk = st.text_input("industrial_risk","Type Here")
management_risk = st.text_input("management_risk","Type Here")
financial_flexibility = st.text_input("financial_flexibility","Type Here")
credibility = st.text_input("credibility","Type Here")
competitiveness = st.text_input("competitiveness","Type Here")
operating_risk = st.text_input("operating_risk","Type Here")
result=""
if st.button("Predict"):
result=predict_bankruptcy(industrial_risk,management_risk,financial_flexibility,credibility,competitiveness,operating_risk)
st.success('The output is {}'.format(result))
if st.button("About"):
st.text("Lets LEarn")
st.text("Built with Streamlit")
if __name__=='__main__':
main()