forked from TrustAGI-Lab/UDAGCN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUDAGCN_demo.py
273 lines (202 loc) · 7.85 KB
/
UDAGCN_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# coding=utf-8
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from argparse import ArgumentParser
from dual_gnn.cached_gcn_conv import CachedGCNConv
from dual_gnn.dataset.DomainData import DomainData
from dual_gnn.ppmi_conv import PPMIConv
import random
import numpy as np
import torch
import torch.functional as F
from torch import nn
import torch.nn.functional as F
import itertools
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = ArgumentParser()
parser.add_argument("--source", type=str, default='acm')
parser.add_argument("--target", type=str, default='dblp')
parser.add_argument("--name", type=str, default='UDAGCN')
parser.add_argument("--seed", type=int,default=200)
parser.add_argument("--UDAGCN", type=bool,default=True)
parser.add_argument("--encoder_dim", type=int, default=16)
args = parser.parse_args()
seed = args.seed
use_UDAGCN = args.UDAGCN
encoder_dim = args.encoder_dim
id = "source: {}, target: {}, seed: {}, UDAGCN: {}, encoder_dim: {}"\
.format(args.source, args.target, seed, use_UDAGCN, encoder_dim)
print(id)
rate = 0.0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
dataset = DomainData("data/{}".format(args.source), name=args.source)
source_data = dataset[0]
print(source_data)
dataset = DomainData("data/{}".format(args.target), name=args.target)
target_data = dataset[0]
print(target_data)
source_data = source_data.to(device)
target_data = target_data.to(device)
class GNN(torch.nn.Module):
def __init__(self, base_model=None, type="gcn", **kwargs):
super(GNN, self).__init__()
if base_model is None:
weights = [None, None]
biases = [None, None]
else:
weights = [conv_layer.weight for conv_layer in base_model.conv_layers]
biases = [conv_layer.bias for conv_layer in base_model.conv_layers]
self.dropout_layers = [nn.Dropout(0.1) for _ in weights]
self.type = type
model_cls = PPMIConv if type == "ppmi" else CachedGCNConv
self.conv_layers = nn.ModuleList([
model_cls(dataset.num_features, 128,
weight=weights[0],
bias=biases[0],
**kwargs),
model_cls(128, encoder_dim,
weight=weights[1],
bias=biases[1],
**kwargs)
])
def forward(self, x, edge_index, cache_name):
for i, conv_layer in enumerate(self.conv_layers):
x = conv_layer(x, edge_index, cache_name)
if i < len(self.conv_layers) - 1:
x = F.relu(x)
x = self.dropout_layers[i](x)
return x
class GradReverse(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
grad_output = grad_output.neg() * rate
return grad_output, None
class GRL(nn.Module):
def forward(self, input):
return GradReverse.apply(input)
loss_func = nn.CrossEntropyLoss().to(device)
encoder = GNN(type="gcn").to(device)
if use_UDAGCN:
ppmi_encoder = GNN(base_model=encoder, type="ppmi", path_len=10).to(device)
cls_model = nn.Sequential(
nn.Linear(encoder_dim, dataset.num_classes),
).to(device)
domain_model = nn.Sequential(
GRL(),
nn.Linear(encoder_dim, 40),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(40, 2),
).to(device)
class Attention(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.dense_weight = nn.Linear(in_channels, 1)
self.dropout = nn.Dropout(0.1)
def forward(self, inputs):
stacked = torch.stack(inputs, dim=1)
weights = F.softmax(self.dense_weight(stacked), dim=1)
outputs = torch.sum(stacked * weights, dim=1)
return outputs
att_model = Attention(encoder_dim).cuda()
models = [encoder, cls_model, domain_model]
if use_UDAGCN:
models.extend([ppmi_encoder, att_model])
params = itertools.chain(*[model.parameters() for model in models])
optimizer = torch.optim.Adam(params, lr=3e-3)
def gcn_encode(data, cache_name, mask=None):
encoded_output = encoder(data.x, data.edge_index, cache_name)
if mask is not None:
encoded_output = encoded_output[mask]
return encoded_output
def ppmi_encode(data, cache_name, mask=None):
encoded_output = ppmi_encoder(data.x, data.edge_index, cache_name)
if mask is not None:
encoded_output = encoded_output[mask]
return encoded_output
def encode(data, cache_name, mask=None):
gcn_output = gcn_encode(data, cache_name, mask)
if use_UDAGCN:
ppmi_output = ppmi_encode(data, cache_name, mask)
outputs = att_model([gcn_output, ppmi_output])
return outputs
else:
return gcn_output
def predict(data, cache_name, mask=None):
encoded_output = encode(data, cache_name, mask)
logits = cls_model(encoded_output)
return logits
def evaluate(preds, labels):
corrects = preds.eq(labels)
accuracy = corrects.float().mean()
return accuracy
def test(data, cache_name, mask=None):
for model in models:
model.eval()
logits = predict(data, cache_name, mask)
preds = logits.argmax(dim=1)
labels = data.y if mask is None else data.y[mask]
accuracy = evaluate(preds, labels)
return accuracy
epochs = 200
def train(epoch):
for model in models:
model.train()
optimizer.zero_grad()
global rate
rate = min((epoch + 1) / epochs, 0.05)
encoded_source = encode(source_data, "source")
encoded_target = encode(target_data, "target")
source_logits = cls_model(encoded_source)
# use source classifier loss:
cls_loss = loss_func(source_logits, source_data.y)
for model in models:
for name, param in model.named_parameters():
if "weight" in name:
cls_loss = cls_loss + param.mean() * 3e-3
if use_UDAGCN:
# use domain classifier loss:
source_domain_preds = domain_model(encoded_source)
target_domain_preds = domain_model(encoded_target)
source_domain_cls_loss = loss_func(
source_domain_preds,
torch.zeros(source_domain_preds.size(0)).type(torch.LongTensor).to(device)
)
target_domain_cls_loss = loss_func(
target_domain_preds,
torch.ones(target_domain_preds.size(0)).type(torch.LongTensor).to(device)
)
loss_grl = source_domain_cls_loss + target_domain_cls_loss
loss = cls_loss + loss_grl
# use target classifier loss:
target_logits = cls_model(encoded_target)
target_probs = F.softmax(target_logits, dim=-1)
target_probs = torch.clamp(target_probs, min=1e-9, max=1.0)
loss_entropy = torch.mean(torch.sum(-target_probs * torch.log(target_probs), dim=-1))
loss = loss + loss_entropy* (epoch / epochs * 0.01)
else:
loss = cls_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
best_source_acc = 0.0
best_target_acc = 0.0
best_epoch = 0.0
for epoch in range(1, epochs):
train(epoch)
source_correct = test(source_data, "source", source_data.test_mask)
target_correct = test(target_data, "target")
print("Epoch: {}, source_acc: {}, target_acc: {}".format(epoch, source_correct, target_correct))
if target_correct > best_target_acc:
best_target_acc = target_correct
best_source_acc = source_correct
best_epoch = epoch
print("=============================================================")
line = "{} - Epoch: {}, best_source_acc: {}, best_target_acc: {}"\
.format(id, best_epoch, best_source_acc, best_target_acc)
print(line)