-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtorch_main.py
287 lines (266 loc) · 13.8 KB
/
torch_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import argparse
import logging
import random
import ujson as json
import pickle as pkl
import numpy as np
import torch
import torch.optim as optim
# from torch_preprocess import run_prepare
from torch_model import TCN
from torch_utils import get_batch, compute_loss, evaluate_batch, FocalLoss
from torch_loader import run_prepare
os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3'
def parse_args():
"""
Parses command line arguments.
"""
parser = argparse.ArgumentParser('Medical')
parser.add_argument('--prepare', action='store_true',
help='create the directories, prepare the vocabulary and embeddings')
parser.add_argument('--train', action='store_true',
help='train the model')
parser.add_argument('--evaluate', action='store_true',
help='evaluate the model on dev set')
parser.add_argument('--predict', action='store_true',
help='predict the answers for test set with trained model')
parser.add_argument('--gpu', type=str, default='0',
help='specify gpu device')
parser.add_argument('--seed', type=int, default=23333,
help='random seed (default: 23333)')
train_settings = parser.add_argument_group('train settings')
train_settings.add_argument('--disable_cuda', action='store_true',
help='Disable CUDA')
train_settings.add_argument('--lr', type=float, default=5e-4,
help='learning rate')
train_settings.add_argument('--clip', type=float, default=-1,
help='gradient clip, -1 means no clip (default: 0.35)')
train_settings.add_argument('--weight_decay', type=float, default=0.0001,
help='weight decay')
train_settings.add_argument('--dropout', type=float, default=0.3,
help='dropout keep rate')
train_settings.add_argument('--batch_train', type=int, default=64,
help='train batch size')
train_settings.add_argument('--batch_eval', type=int, default=64,
help='dev batch size')
train_settings.add_argument('--epochs', type=int, default=30,
help='train epochs')
train_settings.add_argument('--optim', default='Adam',
help='optimizer type')
train_settings.add_argument('--patience', type=int, default=2,
help='num of epochs for train patients')
# 4019-60 41401-40 25000-40 5849-30
train_settings.add_argument('--period', type=int, default=60,
help='period to save batch loss')
model_settings = parser.add_argument_group('model settings')
model_settings.add_argument('--max_len', type=int, default=720,
help='max length of sequence')
model_settings.add_argument('--hidden_size', type=int, default=128,
help='size of LSTM hidden units')
model_settings.add_argument('--use_cudnn', type=bool, default=True,
help='whether to use cudnn rnn')
model_settings.add_argument('--layer_num', type=int, default=2,
help='num of layers')
model_settings.add_argument('--num_threads', type=int, default=8,
help='Number of threads in input pipeline')
model_settings.add_argument('--capacity', type=int, default=20000,
help='Batch size of data set shuffle')
model_settings.add_argument('--is_map', type=bool, default=False,
help='whether to encoding input')
model_settings.add_argument('--is_point', type=bool, default=False,
help='whether to predict point label')
model_settings.add_argument('--is_fc', type=bool, default=False,
help='whether to use focal loss')
model_settings.add_argument('--is_atten', type=bool, default=False,
help='whether to use self attention')
model_settings.add_argument('--is_gated', type=bool, default=False,
help='whether to use gated conv')
model_settings.add_argument('--n_head', type=int, default=2,
help='attention head size (default: 2)')
model_settings.add_argument('--n_kernel', type=int, default=3,
help='kernel size (default: 3)')
model_settings.add_argument('--n_level', type=int, default=8,
help='# of levels (default: 10)')
model_settings.add_argument('--n_filter', type=int, default=256,
help='number of hidden units per layer (default: 256)')
model_settings.add_argument('--n_class', type=int, default=2,
help='class size (default: 2)')
path_settings = parser.add_argument_group('path settings')
path_settings.add_argument('--task', default='4019',
help='the task name')
path_settings.add_argument('--raw_dir', default='data/raw_data/',
help='the dir to store raw data')
path_settings.add_argument('--preprocessed_dir', default='torch_data/preprocessed_data/',
help='the dir to store prepared data')
path_settings.add_argument('--model_dir', default='torch_data/models/',
help='the dir to store models')
path_settings.add_argument('--result_dir', default='torch_data/results/',
help='the dir to output the results')
path_settings.add_argument('--summary_dir', default='torch_data/summary/',
help='the dir to write tensorboard summary')
path_settings.add_argument('--log_path',
help='path of the log file. If not set, logs are printed to console')
return parser.parse_args()
def train_one_epoch(model, optimizer, train_num, train_file, data_dim, args, logger):
model.train()
train_loss = []
n_batch_loss = 0
weight = torch.from_numpy(np.array([0.8, 0.2], dtype=np.float32)).to(args.device)
for batch_idx, batch in enumerate(range(0, train_num, args.batch_train)):
start_idx = batch
end_idx = start_idx + args.batch_train
indexes, medicines, labels, seq_lens = get_batch(train_file[start_idx:end_idx], data_dim, args.device)
optimizer.zero_grad()
outputs = model(indexes, medicines)
# loss = compute_loss(logits=outputs, target=labels, length=seq_lens)
if args.is_fc:
criterion = FocalLoss(gamma=2, alpha=0.75)
else:
criterion = torch.nn.CrossEntropyLoss(weight)
loss = criterion(outputs.view(-1, args.n_class), labels.view(-1))
# params = model.state_dict()
# l2_reg = torch.autograd.Variable(torch.FloatTensor(1), requires_grad=True).cuda()
# l2_reg = l2_reg + params['linear.weight'].norm(2) + params['linear.bias'].norm(2)
# loss += l2_reg * args.weight_decay
loss.backward()
if args.clip > 0:
# 梯度裁剪,输入是(NN参数,最大梯度范数,范数类型=2),一般默认为L2范数
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
optimizer.step()
n_batch_loss += loss.item()
bidx = batch_idx + 1
if bidx % args.period == 0:
logger.info('AvgLoss batch [{} {}] - {}'.format(bidx - args.period + 1, bidx, n_batch_loss / args.period))
n_batch_loss = 0
train_loss.append(loss.item())
avg_train_loss = np.mean(train_loss)
return avg_train_loss
# avg_train_acc = np.mean(train_acc)
# logger.info('Epoch {} Average Loss {} Average Acc {}'.format(ep, avg_train_loss, avg_train_acc))
# loss_sum = tf.Summary(value=[tf.Summary.Value(tag="model/loss", simple_value=avg_train_loss), ])
# acc_sum = tf.Summary(value=[tf.Summary.Value(tag="model/acc", simple_value=avg_train_acc), ])
# writer.add_summary(loss_sum, epoch)
# writer.add_summary(acc_sum, epoch)
def train(args, file_paths):
logger = logging.getLogger('Medical')
logger.info('Loading train file...')
with open(file_paths.train_file, 'rb') as fh:
train_file = pkl.load(fh)
fh.close()
logger.info('Loading eval file...')
with open(file_paths.eval_file, 'rb') as fh:
eval_file = pkl.load(fh)
fh.close()
logger.info('Loading meta...')
with open(file_paths.meta, 'rb') as fh:
meta = pkl.load(fh)
fh.close()
logger.info('Loading shape meta...')
with open(file_paths.shape_meta, 'rb') as fh:
shape_meta = pkl.load(fh)
fh.close()
dim = shape_meta['dim']
train_num = meta['train_total']
eval_num = meta['test_total']
logger.info('Num train data {} Num eval data {}'.format(train_num, eval_num))
logger.info('Index dim {} Medicine dim {}'.format(dim[0], dim[1]))
logger.info('Initialize the model...')
model = TCN(input_size=dim[0]+dim[1], output_size=args.n_class, n_channel=[args.n_filter]*args.n_level,
n_kernel=args.n_kernel, dropout=args.dropout, logger=logger).to(device=args.device)
lr = args.lr
optimizer = getattr(optim, args.optim)(model.parameters(), lr=lr, weight_decay=args.weight_decay)
# scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'max', 0.5, patience=args.patience, verbose=True)
# torch.backends.cudnn.benchmark = True
max_acc, max_roc, max_prc, max_pse, max_sum, max_epoch = 0, 0, 0, 0, 0, 0
FALSE = []
for ep in range(1, args.epochs + 1):
logger.info('Training the model for epoch {}'.format(ep))
avg_loss = train_one_epoch(model, optimizer, train_num, train_file, dim, args, logger)
logger.info('Epoch {} AvgLoss {}'.format(ep, avg_loss))
logger.info('Evaluating the model for epoch {}'.format(ep))
eval_metrics = evaluate_batch(model, eval_num, args.batch_eval, eval_file, dim, args.device, 'eval',
args.is_point, logger)
logger.info('Dev Loss: {}'.format(eval_metrics['loss']))
logger.info('Dev Acc: {}'.format(eval_metrics['acc']))
logger.info('Dev AUROC: {}'.format(eval_metrics['roc']))
logger.info('Dev AUPRC: {}'.format(eval_metrics['prc']))
logger.info('Dev PSe: {}'.format(eval_metrics['pse']))
FALSE.append({'Epoch': ep, 'FP': eval_metrics['fp'], 'FN': eval_metrics['fn']})
max_acc = max((eval_metrics['acc'], max_acc))
max_roc = max(eval_metrics['roc'], max_roc)
max_prc = max(eval_metrics['prc'], max_prc)
max_pse = max(eval_metrics['pse'], max_pse)
dev_sum = eval_metrics['roc'] + eval_metrics['prc'] + eval_metrics['pse']
if dev_sum > max_sum:
max_sum = dev_sum
max_epoch = ep
scheduler.step(metrics=eval_metrics['roc'])
random.shuffle(train_file)
logger.info('Max Acc {}'.format(max_acc))
logger.info('Max AUROC {}'.format(max_roc))
logger.info('Max AUPRC {}'.format(max_prc))
logger.info('Max PSE {}'.format(max_pse))
logger.info('Max Epoch {}'.format(max_epoch))
with open(os.path.join(args.result_dir, 'FALSE.json'), 'w') as f:
for record in FALSE:
f.write(json.dumps(record) + '\n')
f.close()
def run():
"""
Prepares and runs the whole system.
"""
args = parse_args()
logger = logging.getLogger('Medical')
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# 是否存储日志
if args.log_path:
file_handler = logging.FileHandler(args.log_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
else:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.info('Running with args : {}'.format(args))
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
torch.manual_seed(args.seed)
args.device = None
if torch.cuda.is_available() and not args.disable_cuda:
args.device = torch.device('cuda')
else:
args.device = torch.device('cpu')
logger.info('Preparing the directories...')
args.raw_dir = args.raw_dir + args.task
args.preprocessed_dir = args.preprocessed_dir + args.task
args.model_dir = args.model_dir + args.task
args.result_dir = args.result_dir + args.task
args.summary_dir = args.summary_dir + args.task
for dir_path in [args.raw_dir, args.preprocessed_dir, args.model_dir, args.result_dir, args.summary_dir]:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
class FilePaths(object):
def __init__(self):
# 运行记录文件
self.train_file = os.path.join(args.preprocessed_dir, 'train.pkl')
self.eval_file = os.path.join(args.preprocessed_dir, 'eval.pkl')
self.test_file = os.path.join(args.preprocessed_dir, 'test.pkl')
# 计数文件
self.meta = os.path.join(args.preprocessed_dir, 'meta.pkl')
self.shape_meta = os.path.join(args.preprocessed_dir, 'shape_meta.pkl')
file_paths = FilePaths()
if args.prepare:
# max_seq_len, index_dim = run_prepare(args, file_paths)
run_prepare(args)
# with open(file_paths.shape_meta, 'wb') as fh:
# pkl.dump({'max_len': max_seq_len, 'dim': index_dim}, fh)
# fh.close()
if args.train:
train(args, file_paths)
if __name__ == '__main__':
run()