-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsingle_main_1.py
369 lines (344 loc) · 19.6 KB
/
single_main_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import os
import argparse
import logging
import ujson as json
import numpy as np
import tensorflow as tf
from sklearn.metrics import accuracy_score
from single_preprocess import run_prepare
from models.bi_RNN import bi_RNN_Model
from models.sep_RNN import sep_RNN_Model
from models.TCN import TCN
from models.SAnD import SAND
from models.DIMM import DIMM_Model
from single_util import get_record_parser, evaluate_batch, get_batch_dataset, get_dataset
import warnings
warnings.filterwarnings(action='ignore', category=UserWarning, module='tensorflow')
os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3'
def parse_args():
"""
Parses command line arguments.
"""
parser = argparse.ArgumentParser('Medical')
parser.add_argument('--prepare', action='store_true',
help='create the directories, prepare the vocabulary and embeddings')
parser.add_argument('--train', action='store_true',
help='train the model')
parser.add_argument('--evaluate', action='store_true',
help='evaluate the model on dev set')
parser.add_argument('--predict', action='store_true',
help='predict the answers for test set with trained model')
parser.add_argument('--gpu', type=str, default='0',
help='specify gpu device')
train_settings = parser.add_argument_group('train settings')
# 5849=[4800, 40, 160, 40, 64] 25000=[4950, 33, 165, 38, 25] 4019=[11700, 130, 390, 98, 64]
# 41401 = [7800, 52, 260, 40, 64] 208=[
train_settings.add_argument('--num_steps', type=int, default=4800,
help='num of step')
train_settings.add_argument('--period', type=int, default=40,
help='period to save batch loss')
train_settings.add_argument('--checkpoint', type=int, default=160,
help='checkpoint for evaluation')
train_settings.add_argument('--eval_num_batches', type=int, default=40,
help='num of batches for evaluation')
train_settings.add_argument('--optim', default='adam',
help='optimizer type')
train_settings.add_argument('--lr', type=float, default=0.001,
help='learning rate')
train_settings.add_argument('--weight_decay', type=float, default=0.0002,
help='weight decay')
train_settings.add_argument('--dropout_keep_prob', type=float, default=0.65,
help='dropout keep rate')
train_settings.add_argument('--train_batch', type=int, default=32,
help='train batch size')
train_settings.add_argument('--dev_batch', type=int, default=64,
help='dev batch size')
train_settings.add_argument('--epochs', type=int, default=30,
help='train epochs')
train_settings.add_argument('--patience', type=int, default=2,
help='num of epochs for train patients')
model_settings = parser.add_argument_group('model settings')
model_settings.add_argument('--inter_M', type=int, default=64,
help='dense interpolation factor')
model_settings.add_argument('--n_class', type=int, default=2,
help='class size (default: 2)')
model_settings.add_argument('--max_len', type=int, default=720,
help='max length of sequence')
model_settings.add_argument('--n_hidden', type=int, default=128,
help='size of LSTM hidden units')
model_settings.add_argument('--use_cudnn', type=bool, default=True,
help='whether to use cudnn rnn')
model_settings.add_argument('--n_layer', type=int, default=2,
help='num of layers')
model_settings.add_argument('--num_threads', type=int, default=8,
help='Number of threads in input pipeline')
model_settings.add_argument('--capacity', type=int, default=20000,
help='Batch size of data set shuffle')
model_settings.add_argument('--is_map', type=bool, default=True,
help='whether to encoding input')
model_settings.add_argument('--is_bi', type=bool, default=True,
help='whether to use bi-rnn')
model_settings.add_argument('--is_point', type=bool, default=True,
help='whether to predict point label')
model_settings.add_argument('--is_fc', type=bool, default=False,
help='whether to use focal loss')
model_settings.add_argument('--ksize', type=int, default=3,
help='kernel size (default: 3)')
model_settings.add_argument('--levels', type=int, default=11,
help='# of levels (default: 10)')
model_settings.add_argument('--fsize', type=int, default=256,
help='number of hidden units per layer (default: 100)')
model_settings.add_argument('--ipt_att', type=bool, default=True,
help='whether to use input self attention')
model_settings.add_argument('--intra_att', type=bool, default=True,
help='whether to use self attention')
model_settings.add_argument('--inter_att', type=bool, default=True,
help='whether to use cross attention')
model_settings.add_argument('--block_ipt', type=int, default=4,
help='num of block for input attention')
model_settings.add_argument('--head_ipt', type=int, default=1,
help='num of input attention head')
model_settings.add_argument('--step_att', type=bool, default=True,
help='whether to use input step attention')
model_settings.add_argument('--block_stp', type=int, default=4,
help='num of block for step attention')
model_settings.add_argument('--head_stp', type=int, default=4,
help='num of step attention head')
model_settings.add_argument('--atten', type=bool, default=False,
help='whether to use TCN attention')
model_settings.add_argument('--highway', type=bool, default=False,
help='whether to use highway connection')
model_settings.add_argument('--gated', type=bool, default=False,
help='whether to use gated conv')
path_settings = parser.add_argument_group('path settings')
path_settings.add_argument('--task', default='5849',
help='the task name')
path_settings.add_argument('--model', default='DIMM',
help='the model name')
path_settings.add_argument('--raw_dir', default='data/raw_data/',
help='the dir to store raw data')
path_settings.add_argument('--preprocessed_dir', default='data/preprocessed_data/single_task/',
help='the dir to store prepared data')
path_settings.add_argument('--outputs_dir', default='outputs/single_task/',
help='the dir of outputs')
path_settings.add_argument('--model_dir', default='models/',
help='the dir to store models')
path_settings.add_argument('--result_dir', default='results/',
help='the dir to output the results')
path_settings.add_argument('--summary_dir', default='summary/',
help='the dir to write tensorboard summary')
path_settings.add_argument('--log_path',
help='path of the log file. If not set, logs are printed to console')
return parser.parse_args()
def train(args, file_paths, dim):
logger = logging.getLogger('Medical')
logger.info('Loading train eval file...')
with open(file_paths.train_eval_file, "r") as fh:
train_eval_file = json.load(fh)
logger.info('Loading dev eval file...')
with open(file_paths.dev_eval_file, "r") as fh:
dev_eval_file = json.load(fh)
logger.info('Loading train meta...')
with open(file_paths.train_meta, "r") as fh:
train_meta = json.load(fh)
logger.info('Loading dev meta...')
with open(file_paths.dev_meta, "r") as fh:
dev_meta = json.load(fh)
train_total = train_meta['total']
logger.info('Total train data {}'.format(train_total))
dev_total = dev_meta['total']
logger.info('Total dev data {}'.format(dev_total))
logger.info('Index dim {} Medicine dim {}'.format(dim[0], dim[1]))
parser = get_record_parser(args.max_len, dim)
train_dataset = get_batch_dataset(file_paths.train_record_file, parser, args)
dev_dataset = get_dataset(file_paths.dev_record_file, parser, args)
handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(handle, train_dataset.output_types, train_dataset.output_shapes)
train_iterator = train_dataset.make_one_shot_iterator()
dev_iterator = dev_dataset.make_one_shot_iterator()
logger.info('Initialize the model...')
if args.model == 'DIMM':
model = DIMM_Model(args, iterator, dim, logger)
elif args.model == 'BIGRU':
model = bi_RNN_Model(args, iterator, dim, logger)
elif args.model == 'SAND':
T = args.max_len
M = args.inter_M
W = np.zeros((T, M), dtype=np.float32)
for t in range(1, T + 1):
s = M * t / T
for m in range(1, M + 1):
W[t - 1, m - 1] = (1 - abs(s - m) / M) ** 2
model = SAND(args, iterator, dim, logger, W, M)
# model = sep_RNN_Model(args, iterator, dim, logger)
# model = TCN(args, iterator, dim, logger)
sess_config = tf.ConfigProto(intra_op_parallelism_threads=8,
inter_op_parallelism_threads=8,
allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
writer = tf.summary.FileWriter(args.summary_dir)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
train_handle = sess.run(train_iterator.string_handle())
dev_handle = sess.run(dev_iterator.string_handle())
max_acc, max_roc, max_prc, max_pse, max_sum, max_epoch = 0, 0, 0, 0, 0, 0
train_roc, roc_save, patience = 0, 0, 0
max_hour = []
NAMES = None
FALSE = []
lr = args.lr
if args.is_map:
index_W = tf.get_default_graph().get_tensor_by_name('input_encoding/index/dense/W:0')
medicine_W = tf.get_default_graph().get_tensor_by_name('input_encoding/medicine/dense/W:0')
sess.run(tf.assign(model.lr, tf.constant(lr, dtype=tf.float32)))
sess.run(tf.assign(model.is_train, tf.constant(True, dtype=tf.bool)))
sess.run(tf.assign(model.n_batch, tf.constant(args.train_batch, dtype=tf.int32)))
for _ in range(1, args.num_steps + 1):
global_step = sess.run(model.global_step) + 1
# sess.run(tf.assign(model.global_step, tf.constant(global_step + 1, dtype=tf.int32)))
loss, train_op = sess.run([model.loss, model.train_op], feed_dict={handle: train_handle})
if global_step % args.period == 0:
logger.info('Period point {} Loss {}'.format(global_step, loss))
loss_sum = tf.Summary(value=[tf.Summary.Value(tag='model/loss', simple_value=loss), ])
writer.add_summary(loss_sum, global_step)
if global_step % args.checkpoint == 0:
logger.info('Evaluating the model for epoch {}'.format(global_step // args.checkpoint))
sess.run(tf.assign(model.is_train, tf.constant(False, dtype=tf.bool)))
train_metrics, _, summ = evaluate_batch(model, args.eval_num_batches, train_eval_file, sess, 'train',
handle, train_handle, args.is_point, logger)
logger.info('Train Metrics')
logger.info('Loss - {} AUROC - {} AUPRC - {} Acc - {} Pse - {}'.format(train_metrics['loss'],
train_metrics['roc'],
train_metrics['prc'],
train_metrics['acc'],
train_metrics['pse']))
for s in summ:
writer.add_summary(s, global_step)
if train_metrics['roc'] > train_roc:
train_roc = train_metrics['roc']
# NAMES = train_metrics['name']
sess.run(tf.assign(model.n_batch, tf.constant(args.dev_batch, dtype=tf.int32)))
dev_metrics, hour_metrics, summ = evaluate_batch(model, dev_total // args.dev_batch, dev_eval_file,
sess, 'dev', handle, dev_handle, args.is_point, logger)
sess.run(tf.assign(model.is_train, tf.constant(True, dtype=tf.bool)))
logger.info('Dev Metrics')
logger.info('Loss - {} AUCROC - {} AUCPRC - {} Acc - {} Pse - {}'.format(dev_metrics['loss'],
dev_metrics['roc'],
dev_metrics['prc'],
dev_metrics['acc'],
dev_metrics['pse']))
# FALSE.append({'Step': global_step, 'FP': dev_metrics['fp'], 'FN': dev_metrics['fn']})
for s in summ:
writer.add_summary(s, global_step)
writer.flush()
roc = dev_metrics['roc']
if roc > roc_save:
roc_save = roc
patience = 0
else:
patience += 1
if patience >= args.patience:
lr /= 2.0
logger.info('Learning rate reduced to {}'.format(lr))
roc_save = roc
patience = 0
sess.run(tf.assign(model.lr, tf.constant(lr, dtype=tf.float32)))
max_acc = max(dev_metrics['acc'], max_acc)
max_roc = max(dev_metrics['roc'], max_roc)
max_prc = max(dev_metrics['prc'], max_prc)
max_pse = max(dev_metrics['pse'], max_pse)
dev_sum = dev_metrics['roc'] + dev_metrics['prc'] + dev_metrics['pse']
if dev_sum > max_sum:
# var_names = [v.name for v in model.all_params]
# var_values = sess.run(var_names)
# for k, v in zip(var_names, var_values):
# print(k, v)
max_hour = hour_metrics
max_sum = dev_sum
max_epoch = global_step // args.checkpoint
filename = os.path.join(args.model_dir, "model_{}.ckpt".format(global_step))
saver.save(sess, filename)
if args.is_map:
iw = sess.run(index_W)
mw = sess.run(medicine_W)
logger.info('Max Train AUROC - {}'.format(train_roc))
logger.info('Max AUROC - {}'.format(max_roc))
logger.info('Max AUPRC - {}'.format(max_prc))
logger.info('Max Acc - {}'.format(max_acc))
logger.info('Max Pse - {}'.format(max_pse))
logger.info('Max Epoch - {}'.format(max_epoch))
# with open(os.path.join(args.result_dir, 'Hour.json'), 'w') as f:
# for hour in max_hour:
# f.write(json.dumps(hour) + '\n')
# f.close()
# with open(os.path.join(args.result_dir, 'FALSE.json'), 'w') as f:
# for record in FALSE:
# f.write(json.dumps(record) + '\n')
# f.close()
# with open(os.path.join(args.result_dir, 'NAME.json'), 'w') as f:
# for record in NAMES:
# f.write(json.dumps(record) + '\n')
# f.close()
# if args.is_map:
# np.savetxt(os.path.join(args.result_dir, args.task + '_index_W.txt'), iw, fmt='%.6f', delimiter=',')
# np.savetxt(os.path.join(args.result_dir, args.task + '_medicine_W.txt'), mw, fmt='%.6f', delimiter=',')
def run():
"""
Prepares and runs the whole system.
"""
args = parse_args()
logger = logging.getLogger('Medical')
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# 是否存储日志
if args.log_path:
file_handler = logging.FileHandler(args.log_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
else:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.info('Running with args : {}'.format(args))
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
logger.info('Preparing the directories...')
args.raw_dir = args.raw_dir + args.task
args.preprocessed_dir = args.preprocessed_dir + args.task
args.model_dir = os.path.join(args.outputs_dir, args.task, args.model, args.model_dir)
args.result_dir = os.path.join(args.outputs_dir, args.task, args.model, args.result_dir)
args.summary_dir = os.path.join(args.outputs_dir, args.task, args.model, args.summary_dir)
for dir_path in [args.raw_dir, args.preprocessed_dir, args.model_dir, args.result_dir, args.summary_dir]:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
class FilePaths(object):
def __init__(self):
# 运行记录文件
self.train_record_file = os.path.join(args.preprocessed_dir, 'train.tfrecords')
self.dev_record_file = os.path.join(args.preprocessed_dir, 'dev.tfrecords')
self.test_record_file = os.path.join(args.preprocessed_dir, 'test.tfrecords')
# 评估文件
self.train_eval_file = os.path.join(args.preprocessed_dir, 'train_eval.json')
self.dev_eval_file = os.path.join(args.preprocessed_dir, 'dev_eval.json')
self.test_eval_file = os.path.join(args.preprocessed_dir, 'test_eval.json')
# 计数文件
self.train_meta = os.path.join(args.preprocessed_dir, 'train_meta.json')
self.dev_meta = os.path.join(args.preprocessed_dir, 'dev_meta.json')
self.test_meta = os.path.join(args.preprocessed_dir, 'test_meta.json')
self.shape_meta = os.path.join(args.preprocessed_dir, 'shape_meta.json')
file_paths = FilePaths()
if args.prepare:
max_seq_len, index_dim = run_prepare(args, file_paths)
with open(file_paths.shape_meta, 'w') as fh:
json.dump({'max_len': max_seq_len, 'dim': index_dim}, fh)
fh.close()
if args.train:
with open(file_paths.shape_meta, 'r') as fh:
shape_meta = json.load(fh)
fh.close()
train(args, file_paths, shape_meta['dim'])
if __name__ == '__main__':
run()