-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtask_style_vector.py
160 lines (124 loc) · 5.53 KB
/
task_style_vector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gc
import json
import logging
import os
import textwrap
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
from anchor import logger_root
from common import setup_env, mk_parser, AdvantageLogger
from models import build_model_signature, build_tokenizer, build_model
from tasks import load_task
from utils.logger import setup_logger, tabular_pretty_print
from utils.tools import ensure_folder
from utils.pca import PCA
from utils.llm_layers import add_icv_layers, remove_icv_layers
import numpy as np
import pdb
logger = logging.getLogger("task")
if __name__ == "__main__":
parser = mk_parser()
args = parser.parse_args()
logger_root = logger_root.joinpath("main")
dataset_name = args.dataset
logger_folder = logger_root.joinpath(dataset_name)
task_name = f"seed{args.seed}"
task_name += f"_{args.prompt_version}"
task_name += f"_{args.model_type}_{args.model_size}"
task_name += f"_{args.exemplar_method}{'' if args.exemplar_method == 'written' else args.num_k_shots}"
task_name += f"_icvstrength{args.lam}"
setup_env(gpu_s=args.gpus, seed=args.seed)
ensure_folder(logger_folder, parents=True)
setup_logger(
logger_folder,
log_file_name=f"{task_name}.log",
console_output=not args.no_console,
)
logger.info(f"Task Prepared: {task_name}")
logger.info(f"\tDataset: {dataset_name}")
logger.info(f"\tLogger save at {logger_folder}")
# 1. load model, tokenizer
model_signature = build_model_signature(args.model_type, args.model_size)
padding_side = 'right'
tokenizer = build_tokenizer(args.model_type, args.model_size, padding_side=padding_side)
model = build_model(args.model_type, args.model_size, args.in_8bit)
torch.autograd.set_grad_enabled(False)
logger.info(f"Model loaded: {model_signature}")
# 2. load dataset (with demonstrations)
TaskHandler = load_task(dataset_name)
task_agent = TaskHandler(args.prompt_version)
task_agent.set_seed(args.seed)
task_agent.do_load()
dataset = task_agent.mk_result_dataset(tokenizer, no_padding=True, prefix='Please paraphrase the following sentence.\n ')
if args.exemplar_method == "written":
exemplar_str = task_agent.handcrafted_exemplars()
elif args.exemplar_method == "random":
exemplar_str = task_agent.random_selected_exemplars(args.num_k_shots, prefix='Please paraphrase the following sentence.\n\n')
elif args.exemplar_method == "stratified":
exemplar_str = task_agent.stratified_sampling(args.num_k_shots)
else:
raise ValueError(f"Unknown `args.exemplar_method == {args.exemplar_method}`")
text_width = 168
exemplar_showcase = [["Line", "Text"]]
for line_idx, line in enumerate(exemplar_str.split("\n")):
if len(line) > text_width:
splitted_lines = textwrap.wrap(line, text_width)
exemplar_showcase.append([str(line_idx + 1), splitted_lines[0]])
for remained in splitted_lines[1:]:
exemplar_showcase.append(["", remained])
else:
exemplar_showcase.append([str(line_idx + 1), line])
exemplar_showcase[-1][-1] += "<query starts from here>"
for line in tabular_pretty_print(exemplar_showcase):
logger.info(line)
icv, _ = task_agent.obtain_icv(
model, dataset.tokenize_each_demonstration(
task_agent._cached_ex_list.copy(), prefix=("", "")
), rank=1
)
icv = icv[1:]
logger.info(f"Add in-context vectors: {args.batch_size}")
logger.info(f"Selected batch_size: {args.batch_size}")
loader = DataLoader(dataset, shuffle=False, drop_last=False, batch_size=1, num_workers=2)
logger.info("Running ...")
add_icv_layers(model, torch.stack([icv],dim=1).cuda(), [args.lam])
if 'llama' in args.model_type:
gen_args = {
'temperature': 0.45,
'do_sample': True,
'top_k': 0,
'top_p': 1.0,
'eos_token_id': [1642, 13492, 26036, 29908,tokenizer.encode('.10')[-1]]
}
elif 'falcon' in args.model_type:
gen_args = {
'do_sample': False,
'num_beams': 10,
'eos_token_id': [104, 193, 1001, 25, 1702, 18858, 3166]
}
else:
gen_args = {}
with torch.no_grad():
ans_file = open(logger_folder.joinpath(task_name + '.json') , 'w')
for batch_input in tqdm(loader, desc=f"Evaluation"):
batch_input_ids = batch_input[0]
print(tokenizer.batch_decode(batch_input_ids))
batch_masks = batch_input[1]
batch_reference = batch_input[2]
# try:
generation_output = model.generate(
input_ids=batch_input_ids.cuda(),
attention_mask=batch_masks.cuda(),
max_new_tokens=32,
**gen_args,
)
generation_output = tokenizer.decode(generation_output[0][len(batch_input_ids[0]):]).replace("\n","").replace("{","").replace("}","").replace('"','').strip('".').replace(',,','').replace('original','').replace('Original','').split('rewritten')[0].split('revised')[0].replace('10','').split('.')[0]
logger.info(f'generation: {generation_output}, gold: {batch_reference[0]} \n')
ans_file.write(json.dumps({"generation": generation_output,
"gold": batch_reference[0],
}) + "\n")
ans_file.flush()
ans_file.close()
remove_icv_layers(model)