-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAE_reviews.R
114 lines (78 loc) · 3.47 KB
/
AE_reviews.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
## 3.1.1 Quality Across Markets.
## r.mean.from = average review per image (3 reviewers).
## r.mean = individual review.
## All.
t.test(r.mean.from ~ condition, data=p1pramt)
## Published.
t.test(r.mean.from ~ condition, data=p1pramt[p1pramt$published == 1,])
myAnova <- lmer(r.mean.from ~ ex + (1|session/player),
data=p1pramt[p1pramt$condition == "Stratified" & p1pramt$published == 1,])
anova(myAnova)
summary(glht(myAnova, linfct = mcp(ex = "Tukey")),
test = adjusted(type = "bonferroni"))
## Still significant.
## Regressions.
###############
mydata=p1pramt[p1pramt$age.group2 %in% c("young", "old") &
p1pramt$svo.group %in% c("Individualistic", "Prosocial")
,]
fit.vsflat <- lmer(r.mean.from.clean.asskill ~ round + ex2 + (1|session/player),
mydata)
summary(fit.vsflat)
fit.vsflat.r <- lmer(r.mean.from.clean.asskill ~ round + ex2 + (1|session/player),
mydata[mydata$published == 0,])
summary(fit.vsflat.r)
fit.vsflat.p <- lmer(r.mean.from.clean.asskill ~ round + ex2 + (1|session/player),
mydata[mydata$published == 1,])
summary(fit.vsflat.p)
fit.vsflat.contr <- lmer(r.mean.from.clean.asskill ~ round + ex2 +
overall + creativity + abstract +
female + age.group2 + svo.group2 + skill + success.rel +
(1|session/player),
mydata)
summary(fit.vsflat.contr)
fit.vsflat.r.contr <- lmer(r.mean.from.clean.asskill ~ round + ex2 +
overall + creativity + abstract +
female + age.group2 + svo.group2 + skill + success.rel +
(1|session/player),
mydata[mydata$published == 0,])
summary(fit.vsflat.r.contr)
fit.vsflat.p.contr <- lmer(r.mean.from.clean.asskill ~ round + ex2 +
overall + creativity + abstract +
female + age.group2 + svo.group2 + skill + success.rel +
(1|session/player),
mydata[mydata$published == 1,])
summary(fit.vsflat.p.contr)
ttexreg(list(fit.vsflat, fit.vsflat.r, fit.vsflat.p,
fit.vsflat.contr, fit.vsflat.r.contr, fit.vsflat.p.contr))
## Unit of analysis single review.
##################################
mydata <- meltReviews(data=p1pramt)
summarySE(mydata, "r.mean", "condition", na.rm=TRUE)
doPlotMean("r.from", P1=FALSE, data=mydata, format="png",
na.rm=TRUE, SAVE=SAVEIMG)
doPlotRound("r.from", P1=FALSE, data=mydata, format="png",
na.rm=TRUE, SAVE=SAVEIMG)
doPlotDistr("r.from", P1=FALSE, data=mydata, format="png",
SAVE=SAVEIMG)
## Plots.
#########
## Mean.
doPlotMean("r.from", data=mydata, P1=FALSE, facet="ex.review", format="png",
SAVE=SAVEIMG, width=10, na.rm=TRUE)
## Round.
doPlotRound("r.from", data=mydata, P1=FALSE, facet="ex.review", format="png",
SAVE=SAVEIMG, width=10, na.rm=TRUE)
customTheme <- theme(
legend.position = c(0.37, 0.85),
legend.title = element_text(vjust=3, size=20, face="bold")
) + myThemeMod
doPlotRound("r.from", data=mydata, P1=FALSE, ex=TRUE, format="png",
SAVE=SAVEIMG, width=10, ex.name="ex.review", na.rm=TRUE,
customize = customTheme)
## Distr.
doPlotDistr("r.from", data=mydata, P1=FALSE, facet="ex.review", format="png",
SAVE=SAVEIMG, width=10, na.rm=TRUE)
doPlotDistr("r.from", data=mydata, P1=FALSE, ex=TRUE, format="png",
ex.name="ex.review", na.rm=TRUE,
SAVE=SAVEIMG, width=10, doLegend=TRUE)