-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
605 lines (565 loc) · 30.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
#! /usr/bin/python
# -*- coding: utf8 -*-
import os, time, pickle, random, time, sys
from datetime import datetime
import numpy as np
from time import localtime, strftime
import logging, scipy
import math
import tensorflow as tf
import tensorlayer as tl
from model import SRGAN_g, SRGAN_d, Vgg19_simple_api
from utils import *
from config import config, log_config
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.logging.set_verbosity(tf.logging.ERROR)
#import imageio.core.util
from skimage.measure import compare_ssim as ssim
from skimage.measure import compare_psnr as psnr
from skimage.measure import compare_mse as mse
import ocr
'''def silence_imageio_warning(*args, **kwargs):
pass
imageio.core.util._precision_warn = silence_imageio_warning
'''
###====================== HYPER-PARAMETERS ===========================###
## Adam
batch_size = config.TRAIN.batch_size
lr_init = config.TRAIN.lr_init
beta1 = config.TRAIN.beta1
## initialize G
n_epoch_init = config.TRAIN.n_epoch_init
## adversarial learning (SRGAN)
n_epoch = config.TRAIN.n_epoch
lr_decay = config.TRAIN.lr_decay
decay_every = config.TRAIN.decay_every
ni = int(np.sqrt(batch_size))
do_ocr = False
def convert(img):
#print(img.dtype)
img = np.multiply(np.add(img,1), 127.5).astype('uint8')
return img
def quant(res, org):
res = res[:,:,0]
org = org[:,:,0]
#print(img1)
'''mse = np.mean( (img1 - img2) ** 2 )
#print(img1.shape)
if mse == 0:
return 0, 100
PIXEL_MAX = 255.0
return mse, 20 * math.log10(PIXEL_MAX / math.sqrt(mse)), ss
'''
ss = (1+ssim(res, org, data_range=res.max() - res.min()))/2
ms = mse(res, org)
ps = psnr(res, org)
return ms, ps, ss
def train():
print("Training...")
## create folders to save result images and trained model
print("Init epochs:", n_epoch_init, "\nAdversarial epochs:", n_epoch)
save_dir_ginit = "samples/{}_ginit".format(tl.global_flag['mode'])
save_dir_gan = "samples/{}_gan".format(tl.global_flag['mode'])
tl.files.exists_or_mkdir(save_dir_ginit)
tl.files.exists_or_mkdir(save_dir_gan)
checkpoint_dir = "checkpoint" # checkpoint_resize_conv
tl.files.exists_or_mkdir(checkpoint_dir)
logfile = open("logfile.txt", "a")
min_dim_hr = 32
min_dim_lr = 8
###====================== PRE-LOAD DATA ===========================###
train_hr_img_list = sorted(tl.files.load_file_list(path=config.TRAIN.hr_img_path, regx='.*.png', printable=False))#[:21]
train_lr_img_list = sorted(tl.files.load_file_list(path=config.TRAIN.lr_img_path, regx='.*.png', printable=False))#[:21]
valid_hr_img_list = sorted(tl.files.load_file_list(path=config.VALID.hr_img_path, regx='.*.png', printable=False))#[:21]
valid_lr_img_list = sorted(tl.files.load_file_list(path=config.VALID.lr_img_path, regx='.*.png', printable=False))#[:21]
## If your machine have enough memory, please pre-load the whole train set.
train_hr_imgs = tl.vis.read_images(train_hr_img_list, path=config.TRAIN.hr_img_path, n_threads=32)
for i in range(len(train_hr_imgs)):
if len(train_hr_imgs[i].shape)==2:
train_hr_imgs[i] = np.stack((train_hr_imgs[i],)*3, axis=-1)
#print(train_hr_imgs[i].shape)
min_dim_hr = min(min_dim_hr, min(train_hr_imgs[i].shape[0], train_hr_imgs[i].shape[1]))
print("Images in dataset:", len(train_hr_imgs))
#return
min_dim_lr = min_dim_hr//4
#size = valid_lr_img.shape
# for im in train_hr_imgs:
# print(im.shape)
# valid_lr_imgs = tl.vis.read_images(valid_lr_img_list, path=config.VALID.lr_img_path, n_threads=32)
# for im in valid_lr_imgs:
# print(im.shape)
# valid_hr_imgs = tl.vis.read_images(valid_hr_img_list, path=config.VALID.hr_img_path, n_threads=32)
# for im in valid_hr_imgs:
# print(im.shape)
# exit()
###========================== DEFINE MODEL ============================###
## train inference
t_image = tf.placeholder('float32', [batch_size, min_dim_lr, min_dim_lr, 3], name='t_image_input_to_SRGAN_generator')
t_target_image = tf.placeholder('float32', [batch_size, min_dim_hr, min_dim_hr, 3], name='t_target_image')
net_g = SRGAN_g(t_image, is_train=True, reuse=False)
net_d, logits_real = SRGAN_d(t_target_image, is_train=True, reuse=False)
_, logits_fake = SRGAN_d(net_g.outputs, is_train=True, reuse=True)
net_g.print_params(False)
net_g.print_layers()
net_d.print_params(False)
net_d.print_layers()
## vgg inference. 0, 1, 2, 3 BILINEAR NEAREST BICUBIC AREA
t_target_image_224 = tf.image.resize_images(
t_target_image, size=[224, 224], method=0,
align_corners=False) # resize_target_image_for_vgg # http://tensorlayer.readthedocs.io/en/latest/_modules/tensorlayer/layers.html#UpSampling2dLayer
t_predict_image_224 = tf.image.resize_images(net_g.outputs, size=[224, 224], method=0, align_corners=False) # resize_generate_image_for_vgg
net_vgg, vgg_target_emb = Vgg19_simple_api((t_target_image_224 + 1) / 2, reuse=False)
_, vgg_predict_emb = Vgg19_simple_api((t_predict_image_224 + 1) / 2, reuse=True)
## test inference
net_g_test = SRGAN_g(t_image, is_train=False, reuse=True)
# ###========================== DEFINE TRAIN OPS ==========================###
d_loss1 = tl.cost.sigmoid_cross_entropy(logits_real, tf.ones_like(logits_real), name='d1')
d_loss2 = tl.cost.sigmoid_cross_entropy(logits_fake, tf.zeros_like(logits_fake), name='d2')
d_loss = d_loss1 + d_loss2
#g_gan_loss = 1e-3 * tl.cost.sigmoid_cross_entropy(logits_fake, tf.ones_like(logits_fake), name='g')
g_gan_loss = 1e-3 * tl.cost.sigmoid_cross_entropy(logits_fake, tf.ones_like(logits_fake), name='g')
mse_loss = tl.cost.mean_squared_error(net_g.outputs, t_target_image, is_mean=True)
vgg_loss = 2e-3 * tl.cost.mean_squared_error(vgg_predict_emb.outputs, vgg_target_emb.outputs, is_mean=True)
#EPSILON = 1e-6
#rho_loss = 1e-1 * tf.reduce_mean(tf.sqrt(tf.square(tf.subtract(net_g.outputs, t_target_image)) + EPSILON))
g_loss = mse_loss + vgg_loss + g_gan_loss
g_vars = tl.layers.get_variables_with_name('SRGAN_g', True, True)
d_vars = tl.layers.get_variables_with_name('SRGAN_d', True, True)
with tf.variable_scope('learning_rate'):
lr_v = tf.Variable(lr_init, trainable=False)
## Pretrain
g_optim_init = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(mse_loss, var_list=g_vars)
## SRGAN
g_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(g_loss, var_list=g_vars)
d_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(d_loss, var_list=d_vars)
###========================== RESTORE MODEL =============================###
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False))
tl.layers.initialize_global_variables(sess)
#tf.global_variables_initializer()
if tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/g_{}.npz'.format(tl.global_flag['mode']), network=net_g) is False:
tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/g_{}_init.npz'.format(tl.global_flag['mode']), network=net_g)
tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/d_{}.npz'.format(tl.global_flag['mode']), network=net_d)
###============================= LOAD VGG ===============================###
vgg19_npy_path = "vgg19.npy"
if not os.path.isfile(vgg19_npy_path):
print("Please download vgg19.npz from : https://github.com/machrisaa/tensorflow-vgg")
exit()
npz = np.load(vgg19_npy_path, encoding='latin1').item()
params = []
for val in sorted(npz.items()):
W = np.asarray(val[1][0])
b = np.asarray(val[1][1])
print(" Loading %s: %s, %s" % (val[0], W.shape, b.shape))
logfile.write(" Loading %s: %s, %s\n" % (val[0], W.shape, b.shape))
params.extend([W, b])
tl.files.assign_params(sess, params, net_vgg)
# net_vgg.print_params(False)
# net_vgg.print_layers()
'''
###============================= TRAINING ===============================###
## use first `batch_size` of train set to have a quick test during training
sample_imgs = train_hr_imgs[0:batch_size]
# sample_imgs = tl.vis.read_images(train_hr_img_list[0:batch_size], path=config.TRAIN.hr_img_path, n_threads=32) # if no pre-load train set
sample_imgs_384 = tl.prepro.threading_data(sample_imgs, fn=crop_sub_imgs_fn, is_random=False)
print('sample HR sub-image:', sample_imgs_384.shape, sample_imgs_384.min(), sample_imgs_384.max())
sample_imgs_96 = tl.prepro.threading_data(sample_imgs_384, fn=downsample_fn)
print('sample LR sub-image:', sample_imgs_96.shape, sample_imgs_96.min(), sample_imgs_96.max())
tl.vis.save_images(sample_imgs_96, [ni, ni], save_dir_ginit + '/_train_sample_96.png')
tl.vis.save_images(sample_imgs_384, [ni, ni], save_dir_ginit + '/_train_sample_384.png')
tl.vis.save_images(sample_imgs_96, [ni, ni], save_dir_gan + '/_train_sample_96.png')
tl.vis.save_images(sample_imgs_384, [ni, ni], save_dir_gan + '/_train_sample_384.png')
'''
###========================= initialize G ====================###
## fixed learning rate
sess.run(tf.assign(lr_v, lr_init))
print(" ** fixed learning rate: %f (for init G)" % lr_init)
logfile.write(" ** fixed learning rate: %f (for init G)" % lr_init)
for epoch in range(0, n_epoch_init + 1):
#print("running epoch", epoch)
#logfile.write("running epoch"+str(epoch)+"\n")
epoch_time = time.time()
total_mse_loss, n_iter = 0, 0
## If your machine cannot load all images into memory, you should use
## this one to load batch of images while training.
# random.shuffle(train_hr_img_list)
# for idx in range(0, len(train_hr_img_list), batch_size):
# step_time = time.time()
# b_imgs_list = train_hr_img_list[idx : idx + batch_size]
# b_imgs = tl.prepro.threading_data(b_imgs_list, fn=get_imgs_fn, path=config.TRAIN.hr_img_path)
# b_imgs_384 = tl.prepro.threading_data(b_imgs, fn=crop_sub_imgs_fn, is_random=True)
# b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn)
## If your machine have enough memory, please pre-load the whole train set.
#print("Loading images batch")
for idx in range(0, len(train_hr_imgs), batch_size):
step_time = time.time()
b_imgs_384 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, is_random=True)
b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn)
## update G
#print("running session", n_iter)
errM, _ = sess.run([mse_loss, g_optim_init], {t_image: b_imgs_96, t_target_image: b_imgs_384})
#print("Epoch [%2d/%2d] %4d time: %4.4fs, mse: %.8f " % (epoch, n_epoch_init, n_iter, time.time() - step_time, errM))
total_mse_loss += errM
n_iter += 1
log = "[*] Epoch: [%2d/%2d] time: %4.4fs, mse: %.8f" % (epoch, n_epoch_init, time.time() - epoch_time, total_mse_loss / n_iter)
print(log)
logfile.write(log+'\n')
## quick evaluation on train set
#if (epoch != 0) and (epoch % 10 == 0):
#out = sess.run(net_g_test.outputs, {t_image: sample_imgs_96}) #; print('gen sub-image:', out.shape, out.min(), out.max())
#print("[*] save images")
# tl.vis.save_images(out, [ni, ni], save_dir_ginit + '/train_%d.png' % epoch)
## save model
#if (epoch != 0) and (epoch % 10 == 0):
tl.files.save_npz(net_g.all_params, name=checkpoint_dir + '/g_{}_init.npz'.format(tl.global_flag['mode']), sess=sess)
#print("G init model saved")
logfile.write("G init model saved\n")
###========================= train GAN (SRGAN) =========================###
print("\n\nStarted adversarial learning\n\n")
for epoch in range(0, n_epoch + 1):
## update learning rate
if epoch != 0 and epoch!= n_epoch and (epoch % decay_every == 0):
new_lr_decay = lr_decay**(epoch // decay_every)
sess.run(tf.assign(lr_v, lr_init * new_lr_decay))
log = " ** new learning rate: %f (for GAN)" % (lr_init * new_lr_decay)
print(log)
elif epoch == 0:
sess.run(tf.assign(lr_v, lr_init))
log = " ** init lr: %f decay_every_init: %d, lr_decay: %f (for GAN)" % (lr_init, decay_every, lr_decay)
print(log)
logfile.write(log+'\n')
epoch_time = time.time()
total_d_loss, total_g_loss, n_iter = 0, 0, 0
## If your machine cannot load all images into memory, you should use
## this one to load batch of images while training.
# random.shuffle(train_hr_img_list)
# for idx in range(0, len(train_hr_img_list), batch_size):
# step_time = time.time()
# b_imgs_list = train_hr_img_list[idx : idx + batch_size]
# b_imgs = tl.prepro.threading_data(b_imgs_list, fn=get_imgs_fn, path=config.TRAIN.hr_img_path)
# b_imgs_384 = tl.prepro.threading_data(b_imgs, fn=crop_sub_imgs_fn, is_random=True)
# b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn)
## If your machine have enough memory, please pre-load the whole train set.
#print("Loading images batch")
for idx in range(0, len(train_hr_imgs), batch_size):
step_time = time.time()
b_imgs_384 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, is_random=True)
b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn)
## update D
errD, _ = sess.run([d_loss, d_optim], {t_image: b_imgs_96, t_target_image: b_imgs_384})
## update G
#errG, errM, errV, errA, _ = sess.run([g_loss, mse_loss, vgg_loss, g_gan_loss, g_optim], {t_image: b_imgs_96, t_target_image: b_imgs_384})
errG, errM, errV, errA, _ = sess.run([g_loss, mse_loss, vgg_loss, g_gan_loss, g_optim], {t_image: b_imgs_96, t_target_image: b_imgs_384})
#print("Epoch [%2d/%2d] %4d time: %4.4fs, d_loss: %.8f g_loss: %.8f (mse: %.6f vgg: %.6f adv: %.6f)" %
# (epoch, n_epoch, n_iter, time.time() - step_time, errD, errG, errM, errV, errA))
total_d_loss += errD
total_g_loss += errG
#print("running session", n_iter)
n_iter += 1
log = "[*] Epoch: [%2d/%2d] time: %4.4fs, d_loss: %.8f g_loss: %.8f" % (epoch, n_epoch, time.time() - epoch_time, total_d_loss / n_iter,
total_g_loss / n_iter)
print(log)
logfile.write(log+'\n')
#
#logfile.write("Completed")
#logfile.close()
## quick evaluation on train set
#if (epoch != 0) and (epoch % 10 == 0):
#out = sess.run(net_g_test.outputs, {t_image: sample_imgs_96}) #; print('gen sub-image:', out.shape, out.min(), out.max())
#print("[*] save images")
#tl.vis.save_images(out, [ni, ni], save_dir_gan + '/train_%d.png' % epoch)
## save model
#if (epoch != 0) and (epoch % 10 == 0):
tl.files.save_npz(net_g.all_params, name=checkpoint_dir + '/g_{}.npz'.format(tl.global_flag['mode']), sess=sess)
tl.files.save_npz(net_d.all_params, name=checkpoint_dir + '/d_{}.npz'.format(tl.global_flag['mode']), sess=sess)
if(epoch%25==0):
conceval(epoch, net_g_test, t_image, sess)
logfile.write("G and D models saved")
logfile.write("Completed")
logfile.close()
def conceval(epoch, net_g_test, t_image, sess):
print("Intermediate Evaluating epoch...", epoch)
interlog = open("inter_eval.txt", 'a')
tot_psnr = 0
tot_mse = 0
tot_ssim = 0
tot_res_acc = 0
tot_hr_acc = 0
tot_lr_acc = 0
tot_bic_acc = 0
res_beats_hr = 0
res_beats_bic = 0
res_beats_lr = 0
res_fails = 0
global do_ocr
do_ocr = True
test_set_size = 16
test_outputs = []
## create folders to save result images
save_dir = "samples/intermediate"
tl.files.exists_or_mkdir(save_dir)
checkpoint_dir = "checkpoint"
if(do_ocr):
print("Evaluating with OCR")
###====================== PRE-LOAD DATA ===========================###
# train_hr_img_list = sorted(tl.files.load_file_list(path=config.TRAIN.hr_img_path, regx='.*.png', printable=False))
# train_lr_img_list = sorted(tl.files.load_file_list(path=config.TRAIN.lr_img_path, regx='.*.png', printable=False))
valid_hr_img_list = sorted(tl.files.load_file_list(path=config.VALID.hr_img_path, regx='.*.png', printable=False))[:test_set_size]
valid_lr_img_list = sorted(tl.files.load_file_list(path=config.VALID.lr_img_path, regx='.*.png', printable=False))[:test_set_size]
#for i in valid_hr_img_list:
# print (i)
## If your machine have enough memory, please pre-load the whole train set.
# train_hr_imgs = tl.vis.read_images(train_hr_img_list, path=config.TRAIN.hr_img_path, n_threads=32)
# for im in train_hr_imgs:
# print(im.shape)
valid_lr_imgs = tl.vis.read_images(valid_lr_img_list, path=config.VALID.lr_img_path, n_threads=32)
# for im in valid_lr_imgs:
# print(im.shape)
valid_hr_imgs = tl.vis.read_images(valid_hr_img_list, path=config.VALID.hr_img_path, n_threads=32)
# for im in valid_hr_imgs:
# print(im.shape)
# exit()
###========================== DEFINE MODEL ============================###
num_lr_imgs = len(valid_lr_imgs)
num_hr_imgs = len(valid_hr_imgs)
'''print("loaded", num_lr_imgs, "LR images")
if(mode=='multi' and num_lr_imgs != num_hr_imgs):
print('Unequal images in LR and HR')
return
if(mode=='single' and (num_lr_imgs==0 or num_hr_imgs==0)):
print('No images found')
return
sample_imgs = train_hr_imgs[0:batch_size]
# sample_imgs = tl.vis.read_images(train_hr_img_list[0:batch_size], path=config.TRAIN.hr_img_path, n_threads=32) # if no pre-load train set
sample_imgs_384 = tl.prepro.threading_data(sample_imgs, fn=crop_sub_imgs_fn, is_random=False)
print('sample HR sub-image:', sample_imgs_384.shape, sample_imgs_384.min(), sample_imgs_384.max())
sample_imgs_96 = tl.prepro.threading_data(sample_imgs_384, fn=downsample_fn)
'''
###========================== RESTORE G =============================###
in_image = tf.placeholder('float32', [1, None, None, 3], name='input_image')
net_g_oth = SRGAN_g(in_image, is_train=False, reuse=True)
ses2 = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False))
tl.layers.initialize_global_variables(sess)
tf.global_variables_initializer()
tl.files.load_and_assign_npz(sess=ses2, name=checkpoint_dir + '/g_srgan.npz', network=net_g_oth)
print("Loaded model\nProcessing images...")
###======================= EVALUATION =============================###
for imid in range(num_lr_imgs): #64 # 0: 企鹅 81: 蝴蝶 53: 鸟 64: 古堡
valid_lr_img = valid_lr_imgs[imid]
valid_hr_img = valid_hr_imgs[imid]
img_name = valid_lr_img_list[imid]
#print("Processing image :\t", imid, "/\t", num_lr_imgs, "\t", img_name)
# valid_lr_img = get_imgs_fn('test.png', 'data2017/') # if you want to test your own image
# rescale to [-1, 1]
# print(valid_lr_img.min(), valid_lr_img.max())
size = valid_lr_img.shape
if len(size)==2:
valid_lr_img = np.stack((valid_lr_img,)*3, axis=-1)
valid_hr_img = np.stack((valid_hr_img,)*3, axis=-1)
size = valid_lr_img.shape
# t_image = tf.placeholder('float32', [None, size[0], size[1], size[2]], name='input_image') # the old version of TL need to specify the image size
#print("size", size)
valid_lr_img_res = (valid_lr_img / 127.5) - 1
start_time = time.time()
out = ses2.run(net_g_oth.outputs, {in_image: [valid_lr_img_res]})
#print("took: %4.4fs" % (time.time() - start_time))
out_uint8 = convert(out[0])
#print("LR size: %s / generated HR size: %s" % (size, out.shape)) # LR size: (339, 510, 3) / gen HR size: (1, 1356, 2040, 3)
#print("[*] save images\n")
test_outputs.append(out_uint8)
tl.vis.save_image(out_uint8, save_dir + '/'+img_name[:-4]+'_gen_'+format(epoch, '03d')+'.png')
#tl.vis.save_image(valid_lr_img, save_dir + '/'+img_name[:-4]+'_lr_'+format(epoch, '03d')+'.png')
#tl.vis.save_image(valid_hr_img, save_dir + '/'+img_name[:-4]+'_hr_'+format(epoch, '03d')+'.png')
out_bicu = scipy.misc.imresize(valid_lr_img, [size[0] * 4, size[1] * 4], interp='bicubic', mode=None)
#tl.vis.save_image(out_bicu, save_dir + '/'+img_name[:-4]+'_bicubic.png')
#print(type(out_uint8), out_uint8.shape)
#print(type(valid_hr_img), valid_hr_img.shape)
#print(type(valid_lr_img), valid_lr_img.shape)
img_mse, img_psnr, img_ssim = quant(out_uint8, valid_hr_img)
#print('===')
tot_psnr += img_psnr
tot_mse += img_mse
tot_ssim += img_ssim
if(do_ocr):
res_acc, hr_acc, lr_acc, bic_acc = ocr.getAccuracy(out_uint8, valid_hr_img, valid_lr_img, out_bicu, imid)
tot_res_acc += res_acc
tot_hr_acc += hr_acc
tot_lr_acc += lr_acc
tot_bic_acc += bic_acc
if(res_acc>hr_acc):
res_beats_hr += 1
elif(res_acc>bic_acc):
res_beats_bic +=1
elif(res_acc>lr_acc):
res_beats_lr += 1
else:
res_fails += 1
if(do_ocr):
ocrres = "Average GEN accuracy: "+str(tot_res_acc/num_lr_imgs)[:8]+"\nAverage HRI accuracy: "+str(tot_hr_acc/num_lr_imgs)[:8]+"\nAverage LRI accuracy: "+str(tot_lr_acc/num_lr_imgs)[:8]+"\nAverage BIC accuracy: "+str(tot_bic_acc/num_lr_imgs)[:8]+"\n\nRES>HRI: "+str(res_beats_hr)+"\nRES>BIC: "+str(res_beats_bic)+"\nRES>LRI: "+str(res_beats_lr)+"\nRESFAIL: "+str(res_fails)+'\n'+'='*50+'\n'
#ocrlog.write(ocrres)
try:
hist = "Average PSNR: "+str(tot_psnr/num_lr_imgs)[:8]+"\tAverage MSE: "+str(tot_mse/num_lr_imgs)[:8]+"\tAverage SSIM: "+str(tot_ssim/num_lr_imgs)[:8]+"\tAverage Improvement over bicubic: "+str(tot_res_acc/tot_bic_acc)[:8]+'\n'
except:
hist = "Average PSNR: "+str(tot_psnr/num_lr_imgs)[:8]+"\tAverage MSE: "+str(tot_mse/num_lr_imgs)[:8]+"\tAverage SSIM: "+str(tot_ssim/num_lr_imgs)[:8]+'\n'
else:
hist = "Average PSNR: "+str(tot_psnr/num_lr_imgs)[:8]+"\tAverage MSE: "+str(tot_mse/num_lr_imgs)[:8]+"\tAverage SSIM: "+str(tot_ssim/num_lr_imgs)[:8]+'\n'
interlog.write(hist)
interlog.close()
ses2.close()
del in_image
del net_g_oth
del test_outputs
print("\nAll images done\n"+hist)
return
def evaluate(mode):
print("Evaluating...")
history = open("eval_history.txt", "a")
latest = open("latest_eval.txt", "w")
ocrlog = open("ocrlog.txt", "a")
tot_psnr = 0
tot_mse = 0
tot_ssim = 0
tot_res_acc = 0
tot_hr_acc = 0
tot_lr_acc = 0
tot_bic_acc = 0
res_beats_hr = 0
res_beats_bic = 0
res_beats_lr = 0
res_fails = 0
## create folders to save result images
save_dir = "samples/{}".format(tl.global_flag['mode'])
tl.files.exists_or_mkdir(save_dir)
checkpoint_dir = "checkpoint"
if(do_ocr):
print("Evaluating with OCR")
###====================== PRE-LOAD DATA ===========================###
# train_hr_img_list = sorted(tl.files.load_file_list(path=config.TRAIN.hr_img_path, regx='.*.png', printable=False))
# train_lr_img_list = sorted(tl.files.load_file_list(path=config.TRAIN.lr_img_path, regx='.*.png', printable=False))
valid_hr_img_list = sorted(tl.files.load_file_list(path=config.VALID.hr_img_path, regx='.*.png', printable=False))
valid_lr_img_list = sorted(tl.files.load_file_list(path=config.VALID.lr_img_path, regx='.*.png', printable=False))
## If your machine have enough memory, please pre-load the whole train set.
# train_hr_imgs = tl.vis.read_images(train_hr_img_list, path=config.TRAIN.hr_img_path, n_threads=32)
# for im in train_hr_imgs:
# print(im.shape)
valid_lr_imgs = tl.vis.read_images(valid_lr_img_list, path=config.VALID.lr_img_path, n_threads=32)
# for im in valid_lr_imgs:
# print(im.shape)
valid_hr_imgs = tl.vis.read_images(valid_hr_img_list, path=config.VALID.hr_img_path, n_threads=32)
# for im in valid_hr_imgs:
# print(im.shape)
# exit()
###========================== DEFINE MODEL ============================###
num_lr_imgs = len(valid_lr_imgs)
num_hr_imgs = len(valid_hr_imgs)
print("loaded", num_lr_imgs, "LR images")
if(mode=='multi' and num_lr_imgs != num_hr_imgs):
print('Unequal images in LR and HR')
return
if(mode=='single' and (num_lr_imgs==0 or num_hr_imgs==0)):
print('No images found')
return
###========================== RESTORE G =============================###
t_image = tf.placeholder('float32', [1, None, None, 3], name='input_image')
net_g = SRGAN_g(t_image, is_train=False, reuse=False)
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False))
tl.layers.initialize_global_variables(sess)
#tf.global_variables_initializer()
tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/g_srgan.npz', network=net_g)
print("Loaded model\nProcessing images...")
###======================= EVALUATION =============================###
for imid in range(num_lr_imgs): #64 # 0: 企鹅 81: 蝴蝶 53: 鸟 64: 古堡
valid_lr_img = valid_lr_imgs[imid]
valid_hr_img = valid_hr_imgs[imid]
img_name = valid_lr_img_list[imid]
#print("Processing image :\t", imid, "/\t", num_lr_imgs, "\t", img_name)
# valid_lr_img = get_imgs_fn('test.png', 'data2017/') # if you want to test your own image
# rescale to [-1, 1]
# print(valid_lr_img.min(), valid_lr_img.max())
size = valid_lr_img.shape
if len(size)==2:
valid_lr_img = np.stack((valid_lr_img,)*3, axis=-1)
valid_hr_img = np.stack((valid_hr_img,)*3, axis=-1)
size = valid_lr_img.shape
# t_image = tf.placeholder('float32', [None, size[0], size[1], size[2]], name='input_image') # the old version of TL need to specify the image size
#print("size", size)
valid_lr_img_res = (valid_lr_img / 127.5) - 1
start_time = time.time()
out = sess.run(net_g.outputs, {t_image: [valid_lr_img_res]})
#print("took: %4.4fs" % (time.time() - start_time))
out_uint8 = convert(out[0])
#print("LR size: %s / generated HR size: %s" % (size, out.shape)) # LR size: (339, 510, 3) / gen HR size: (1, 1356, 2040, 3)
#print("[*] save images\n")
tl.vis.save_image(out_uint8, save_dir + '/'+img_name[:-4]+'_gen.png')
tl.vis.save_image(valid_lr_img, save_dir + '/'+img_name[:-4]+'_lr.png')
tl.vis.save_image(valid_hr_img, save_dir + '/'+img_name[:-4]+'_hr.png')
out_bicu = scipy.misc.imresize(valid_lr_img, [size[0] * 4, size[1] * 4], interp='bicubic', mode=None)
tl.vis.save_image(out_bicu, save_dir + '/'+img_name[:-4]+'_bicubic.png')
#print(type(out[0]), out[0].shape)
#print(type(valid_hr_img), valid_hr_img.shape)
#print(type(valid_lr_img), valid_lr_img.shape)
img_mse, img_psnr, img_ssim = quant(out_uint8, valid_hr_img)
tot_psnr += img_psnr
tot_mse += img_mse
tot_ssim += img_ssim
if(do_ocr):
res_acc, hr_acc, lr_acc, bic_acc = ocr.getAccuracy(out_uint8, valid_hr_img, valid_lr_img, out_bicu, imid)
tot_res_acc += res_acc
tot_hr_acc += hr_acc
tot_lr_acc += lr_acc
tot_bic_acc += bic_acc
if(res_acc>hr_acc):
res_beats_hr += 1
elif(res_acc>bic_acc):
res_beats_bic +=1
elif(res_acc>lr_acc):
res_beats_lr += 1
else:
res_fails += 1
eval_log = "Image: "+str(imid+1)+"\tPSNR: "+str(img_psnr)[:8]+"\tMSE: "+str(img_mse)[:8]+"\tSSIM: "+str(img_ssim)[:8]+'\n'
latest.write(eval_log)
#print(type(valid_lr_img), type(out_bicu))
if(mode=='single'):
num_lr_imgs = 1
latest.close()
history.close()
print("\n1 image done\n"+eval_log)
return
incre = int(50.0 / num_lr_imgs * imid)
sys.stdout.write('\r' + '|%s%s| %d/%d images done' % ('\033[7m' + ' '*incre + ' \033[27m',' '*(49-incre), imid+1, num_lr_imgs))
sys.stdout.flush()
if(do_ocr):
ocrres = "Average GEN accuracy: "+str(tot_res_acc/num_lr_imgs)[:8]+"\nAverage HRI accuracy: "+str(tot_hr_acc/num_lr_imgs)[:8]+"\nAverage LRI accuracy: "+str(tot_lr_acc/num_lr_imgs)[:8]+"\nAverage BIC accuracy: "+str(tot_bic_acc/num_lr_imgs)[:8]+"\n\nRES>HRI: "+str(res_beats_hr)+"\nRES>BIC: "+str(res_beats_bic)+"\nRES>LRI: "+str(res_beats_lr)+"\nRESFAIL: "+str(res_fails)+'\n'+'='*50+'\n'
ocrlog.write(ocrres)
try:
hist = "Average PSNR: "+str(tot_psnr/num_lr_imgs)[:8]+"\tAverage MSE: "+str(tot_mse/num_lr_imgs)[:8]+"\tAverage SSIM: "+str(tot_ssim/num_lr_imgs)[:8]+"\tAverage Improvement over bicubic: "+str(tot_res_acc/tot_bic_acc)[:8]+'\n'
except:
hist = "Average PSNR: "+str(tot_psnr/num_lr_imgs)[:8]+"\tAverage MSE: "+str(tot_mse/num_lr_imgs)[:8]+"\tAverage SSIM: "+str(tot_ssim/num_lr_imgs)[:8]+'\n'
else:
hist = "Average PSNR: "+str(tot_psnr/num_lr_imgs)[:8]+"\tAverage MSE: "+str(tot_mse/num_lr_imgs)[:8]+"\tAverage SSIM: "+str(tot_ssim/num_lr_imgs)[:8]+'\n'
history.write(hist)
latest.close()
history.close()
ocrlog.close()
print("\nAll images done\n"+hist)
return
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
print("Starting...")
parser.add_argument('--mode', type=str, default='srgan', help='srgan, evaluate, evaluateall')
parser.add_argument('--ocr', type=str, default='false', help='true, false')
args = parser.parse_args()
ocr_do = args.ocr
if ocr_do == 'true':
do_ocr = True
else:
do_ocr = False
tl.global_flag['mode'] = args.mode
if tl.global_flag['mode'] == 'srgan':
train()
elif tl.global_flag['mode'] == 'evaluate':
evaluate(mode='single')
elif tl.global_flag['mode'] == 'evaluateall':
evaluate(mode='multi')
else:
raise Exception("Unknow --mode")