-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogfile.txt
3480 lines (3480 loc) · 224 KB
/
logfile.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Loading conv1_1: (3, 3, 3, 64), (64,)
Loading conv1_2: (3, 3, 64, 64), (64,)
Loading conv2_1: (3, 3, 64, 128), (128,)
Loading conv2_2: (3, 3, 128, 128), (128,)
Loading conv3_1: (3, 3, 128, 256), (256,)
Loading conv3_2: (3, 3, 256, 256), (256,)
Loading conv3_3: (3, 3, 256, 256), (256,)
Loading conv3_4: (3, 3, 256, 256), (256,)
Loading conv4_1: (3, 3, 256, 512), (512,)
Loading conv4_2: (3, 3, 512, 512), (512,)
Loading conv4_3: (3, 3, 512, 512), (512,)
Loading conv4_4: (3, 3, 512, 512), (512,)
Loading conv5_1: (3, 3, 512, 512), (512,)
Loading conv5_2: (3, 3, 512, 512), (512,)
Loading conv5_3: (3, 3, 512, 512), (512,)
Loading conv5_4: (3, 3, 512, 512), (512,)
Loading fc6: (25088, 4096), (4096,)
Loading fc7: (4096, 4096), (4096,)
Loading fc8: (4096, 1000), (1000,)
** fixed learning rate: 0.000100 (for init G)running epoch0
[*] Epoch: [ 0/20] time: 6.6228s, mse: 0.33822191
G init model saved
running epoch1
[*] Epoch: [ 1/20] time: 3.7940s, mse: 0.19017475
G init model saved
running epoch2
[*] Epoch: [ 2/20] time: 3.7542s, mse: 0.13413100
G init model saved
running epoch3
[*] Epoch: [ 3/20] time: 3.8016s, mse: 0.11974877
G init model saved
running epoch4
[*] Epoch: [ 4/20] time: 3.7283s, mse: 0.10894598
G init model saved
running epoch5
[*] Epoch: [ 5/20] time: 3.7468s, mse: 0.09949980
G init model saved
running epoch6
[*] Epoch: [ 6/20] time: 3.7666s, mse: 0.09699073
G init model saved
running epoch7
[*] Epoch: [ 7/20] time: 3.7457s, mse: 0.09409818
G init model saved
running epoch8
[*] Epoch: [ 8/20] time: 3.7859s, mse: 0.09517388
G init model saved
running epoch9
[*] Epoch: [ 9/20] time: 3.6741s, mse: 0.09346269
G init model saved
running epoch10
[*] Epoch: [10/20] time: 3.6231s, mse: 0.08927556
G init model saved
running epoch11
[*] Epoch: [11/20] time: 3.6542s, mse: 0.09030155
G init model saved
running epoch12
[*] Epoch: [12/20] time: 3.6432s, mse: 0.09013825
G init model saved
running epoch13
[*] Epoch: [13/20] time: 3.5845s, mse: 0.08897327
G init model saved
running epoch14
[*] Epoch: [14/20] time: 3.6348s, mse: 0.08560982
G init model saved
running epoch15
[*] Epoch: [15/20] time: 3.5840s, mse: 0.08508087
G init model saved
running epoch16
[*] Epoch: [16/20] time: 3.7320s, mse: 0.08026360
G init model saved
running epoch17
[*] Epoch: [17/20] time: 3.7411s, mse: 0.08583638
G init model saved
running epoch18
[*] Epoch: [18/20] time: 3.7377s, mse: 0.09090295
G init model saved
running epoch19
[*] Epoch: [19/20] time: 3.7629s, mse: 0.08620059
G init model saved
running epoch20
[*] Epoch: [20/20] time: 3.7593s, mse: 0.08671940
G init model saved
** init lr: 0.000100 decay_every_init: 40, lr_decay: 0.100000 (for GAN)
[*] Epoch: [ 0/80] time: 337.3771s, d_loss: 1.39668719 g_loss: 21.38310026
G and D models saved[*] Epoch: [ 0/80] time: 337.3771s, d_loss: 1.39668719 g_loss: 21.38310026
[*] Epoch: [ 1/80] time: 331.0046s, d_loss: 1.35103028 g_loss: 19.49909521
G and D models saved[*] Epoch: [ 1/80] time: 331.0046s, d_loss: 1.35103028 g_loss: 19.49909521
[*] Epoch: [ 2/80] time: 331.5039s, d_loss: 1.26317668 g_loss: 18.85383963
G and D models saved[*] Epoch: [ 2/80] time: 331.5039s, d_loss: 1.26317668 g_loss: 18.85383963
[*] Epoch: [ 3/80] time: 331.0161s, d_loss: 1.04934697 g_loss: 18.06697824
G and D models saved[*] Epoch: [ 3/80] time: 331.0161s, d_loss: 1.04934697 g_loss: 18.06697824
[*] Epoch: [ 4/80] time: 333.0798s, d_loss: 0.85371313 g_loss: 17.60142574
G and D models saved[*] Epoch: [ 4/80] time: 333.0798s, d_loss: 0.85371313 g_loss: 17.60142574
[*] Epoch: [ 5/80] time: 332.5677s, d_loss: 0.65146257 g_loss: 17.74277857
G and D models saved[*] Epoch: [ 5/80] time: 332.5677s, d_loss: 0.65146257 g_loss: 17.74277857
[*] Epoch: [ 6/80] time: 331.3972s, d_loss: 0.47633857 g_loss: 17.38892234
G and D models saved[*] Epoch: [ 6/80] time: 331.3972s, d_loss: 0.47633857 g_loss: 17.38892234
[*] Epoch: [ 7/80] time: 332.5299s, d_loss: 0.37504214 g_loss: 17.01331358
G and D models saved[*] Epoch: [ 7/80] time: 332.5299s, d_loss: 0.37504214 g_loss: 17.01331358
[*] Epoch: [ 8/80] time: 332.5304s, d_loss: 0.57942897 g_loss: 16.85895499
G and D models saved[*] Epoch: [ 8/80] time: 332.5304s, d_loss: 0.57942897 g_loss: 16.85895499
[*] Epoch: [ 9/80] time: 333.8806s, d_loss: 0.49378301 g_loss: 16.65168776
G and D models saved[*] Epoch: [ 9/80] time: 333.8806s, d_loss: 0.49378301 g_loss: 16.65168776
[*] Epoch: [10/80] time: 333.5874s, d_loss: 0.52276891 g_loss: 16.60209839
G and D models saved[*] Epoch: [10/80] time: 333.5874s, d_loss: 0.52276891 g_loss: 16.60209839
[*] Epoch: [11/80] time: 335.2290s, d_loss: 0.47449848 g_loss: 16.13904123
G and D models saved[*] Epoch: [11/80] time: 335.2290s, d_loss: 0.47449848 g_loss: 16.13904123
[*] Epoch: [12/80] time: 333.2958s, d_loss: 0.51717060 g_loss: 16.10719077
G and D models saved[*] Epoch: [12/80] time: 333.2958s, d_loss: 0.51717060 g_loss: 16.10719077
[*] Epoch: [13/80] time: 332.6395s, d_loss: 0.67915156 g_loss: 15.85346116
G and D models saved[*] Epoch: [13/80] time: 332.6395s, d_loss: 0.67915156 g_loss: 15.85346116
[*] Epoch: [14/80] time: 332.9895s, d_loss: 0.55134060 g_loss: 16.16588147
G and D models saved[*] Epoch: [14/80] time: 332.9895s, d_loss: 0.55134060 g_loss: 16.16588147
[*] Epoch: [15/80] time: 331.8696s, d_loss: 0.28985755 g_loss: 15.74402286
G and D models saved[*] Epoch: [15/80] time: 331.8696s, d_loss: 0.28985755 g_loss: 15.74402286
[*] Epoch: [16/80] time: 332.4463s, d_loss: 0.92331869 g_loss: 15.83302590
G and D models saved[*] Epoch: [16/80] time: 332.4463s, d_loss: 0.92331869 g_loss: 15.83302590
[*] Epoch: [17/80] time: 332.7351s, d_loss: 1.41607135 g_loss: 15.68582853
G and D models saved[*] Epoch: [17/80] time: 332.7351s, d_loss: 1.41607135 g_loss: 15.68582853
[*] Epoch: [18/80] time: 332.2949s, d_loss: 0.79298748 g_loss: 15.62926102
G and D models saved[*] Epoch: [18/80] time: 332.2949s, d_loss: 0.79298748 g_loss: 15.62926102
[*] Epoch: [19/80] time: 332.3980s, d_loss: 0.45536695 g_loss: 15.16935871
G and D models saved[*] Epoch: [19/80] time: 332.3980s, d_loss: 0.45536695 g_loss: 15.16935871
[*] Epoch: [20/80] time: 332.5550s, d_loss: 0.57422417 g_loss: 15.09382742
G and D models saved[*] Epoch: [20/80] time: 332.5550s, d_loss: 0.57422417 g_loss: 15.09382742
[*] Epoch: [21/80] time: 334.3364s, d_loss: 0.33417804 g_loss: 15.02926399
G and D models saved[*] Epoch: [21/80] time: 334.3364s, d_loss: 0.33417804 g_loss: 15.02926399
[*] Epoch: [22/80] time: 333.9339s, d_loss: 0.71151367 g_loss: 14.73972540
G and D models saved[*] Epoch: [22/80] time: 333.9339s, d_loss: 0.71151367 g_loss: 14.73972540
[*] Epoch: [23/80] time: 332.9241s, d_loss: 0.67429128 g_loss: 15.10361580
G and D models saved[*] Epoch: [23/80] time: 332.9241s, d_loss: 0.67429128 g_loss: 15.10361580
[*] Epoch: [24/80] time: 332.0227s, d_loss: 0.60289280 g_loss: 14.97481357
G and D models saved[*] Epoch: [24/80] time: 332.0227s, d_loss: 0.60289280 g_loss: 14.97481357
[*] Epoch: [25/80] time: 333.3457s, d_loss: 0.49462896 g_loss: 14.90269481
G and D models saved[*] Epoch: [25/80] time: 333.3457s, d_loss: 0.49462896 g_loss: 14.90269481
[*] Epoch: [26/80] time: 334.7014s, d_loss: 0.37837700 g_loss: 14.52475950
G and D models saved[*] Epoch: [26/80] time: 334.7014s, d_loss: 0.37837700 g_loss: 14.52475950
[*] Epoch: [27/80] time: 332.9865s, d_loss: 0.31895758 g_loss: 14.89780066
G and D models saved[*] Epoch: [27/80] time: 332.9865s, d_loss: 0.31895758 g_loss: 14.89780066
[*] Epoch: [28/80] time: 333.9495s, d_loss: 0.70212284 g_loss: 14.67661586
G and D models saved[*] Epoch: [28/80] time: 333.9495s, d_loss: 0.70212284 g_loss: 14.67661586
[*] Epoch: [29/80] time: 334.0397s, d_loss: 0.57256921 g_loss: 14.67852702
G and D models saved[*] Epoch: [29/80] time: 334.0397s, d_loss: 0.57256921 g_loss: 14.67852702
[*] Epoch: [30/80] time: 333.2190s, d_loss: 0.82461291 g_loss: 14.51788782
G and D models saved[*] Epoch: [30/80] time: 333.2190s, d_loss: 0.82461291 g_loss: 14.51788782
[*] Epoch: [31/80] time: 335.1228s, d_loss: 0.48686865 g_loss: 14.64752914
G and D models saved[*] Epoch: [31/80] time: 335.1228s, d_loss: 0.48686865 g_loss: 14.64752914
[*] Epoch: [32/80] time: 334.2969s, d_loss: 0.45193246 g_loss: 14.47622850
G and D models saved[*] Epoch: [32/80] time: 334.2969s, d_loss: 0.45193246 g_loss: 14.47622850
[*] Epoch: [33/80] time: 332.3337s, d_loss: 0.41269939 g_loss: 14.43755450
G and D models saved[*] Epoch: [33/80] time: 332.3337s, d_loss: 0.41269939 g_loss: 14.43755450
[*] Epoch: [34/80] time: 331.9140s, d_loss: 0.55578592 g_loss: 14.17761125
G and D models saved[*] Epoch: [34/80] time: 331.9140s, d_loss: 0.55578592 g_loss: 14.17761125
[*] Epoch: [35/80] time: 331.7173s, d_loss: 0.41887410 g_loss: 14.37032979
G and D models saved[*] Epoch: [35/80] time: 331.7173s, d_loss: 0.41887410 g_loss: 14.37032979
[*] Epoch: [36/80] time: 331.5946s, d_loss: 0.88141974 g_loss: 13.67225124
G and D models saved[*] Epoch: [36/80] time: 331.5946s, d_loss: 0.88141974 g_loss: 13.67225124
[*] Epoch: [37/80] time: 332.1847s, d_loss: 0.49007481 g_loss: 13.87344247
G and D models saved[*] Epoch: [37/80] time: 332.1847s, d_loss: 0.49007481 g_loss: 13.87344247
[*] Epoch: [38/80] time: 331.4542s, d_loss: 0.24331749 g_loss: 14.13758779
G and D models saved[*] Epoch: [38/80] time: 331.4542s, d_loss: 0.24331749 g_loss: 14.13758779
[*] Epoch: [39/80] time: 330.8022s, d_loss: 0.42997992 g_loss: 14.30777218
G and D models saved ** new learning rate: 0.000010 (for GAN)
[*] Epoch: [40/80] time: 332.4586s, d_loss: 0.26260709 g_loss: 13.94233675
G and D models saved[*] Epoch: [40/80] time: 332.4586s, d_loss: 0.26260709 g_loss: 13.94233675
[*] Epoch: [41/80] time: 331.9256s, d_loss: 0.21358930 g_loss: 13.69013691
G and D models saved[*] Epoch: [41/80] time: 331.9256s, d_loss: 0.21358930 g_loss: 13.69013691
[*] Epoch: [42/80] time: 332.9484s, d_loss: 0.25197635 g_loss: 13.49876255
G and D models saved[*] Epoch: [42/80] time: 332.9484s, d_loss: 0.25197635 g_loss: 13.49876255
[*] Epoch: [43/80] time: 332.0963s, d_loss: 0.18899294 g_loss: 13.72728818
G and D models saved[*] Epoch: [43/80] time: 332.0963s, d_loss: 0.18899294 g_loss: 13.72728818
[*] Epoch: [44/80] time: 332.3651s, d_loss: 0.17747133 g_loss: 13.82411844
G and D models saved[*] Epoch: [44/80] time: 332.3651s, d_loss: 0.17747133 g_loss: 13.82411844
[*] Epoch: [45/80] time: 330.4825s, d_loss: 0.23549653 g_loss: 13.87084802
G and D models saved[*] Epoch: [45/80] time: 330.4825s, d_loss: 0.23549653 g_loss: 13.87084802
[*] Epoch: [46/80] time: 331.8919s, d_loss: 0.17374570 g_loss: 13.56086713
G and D models saved[*] Epoch: [46/80] time: 331.8919s, d_loss: 0.17374570 g_loss: 13.56086713
[*] Epoch: [47/80] time: 331.9693s, d_loss: 0.18632599 g_loss: 13.22458433
G and D models saved[*] Epoch: [47/80] time: 331.9693s, d_loss: 0.18632599 g_loss: 13.22458433
[*] Epoch: [48/80] time: 332.1609s, d_loss: 0.15045806 g_loss: 13.39562914
G and D models saved[*] Epoch: [48/80] time: 332.1609s, d_loss: 0.15045806 g_loss: 13.39562914
[*] Epoch: [49/80] time: 331.7053s, d_loss: 0.13423255 g_loss: 13.63998851
G and D models saved[*] Epoch: [49/80] time: 331.7053s, d_loss: 0.13423255 g_loss: 13.63998851
[*] Epoch: [50/80] time: 332.8249s, d_loss: 0.15984497 g_loss: 13.56186093
G and D models saved[*] Epoch: [50/80] time: 332.8249s, d_loss: 0.15984497 g_loss: 13.56186093
[*] Epoch: [51/80] time: 331.1109s, d_loss: 0.24282339 g_loss: 13.52646425
G and D models saved[*] Epoch: [51/80] time: 331.1109s, d_loss: 0.24282339 g_loss: 13.52646425
[*] Epoch: [52/80] time: 332.6322s, d_loss: 0.12729592 g_loss: 13.56054910
G and D models saved[*] Epoch: [52/80] time: 332.6322s, d_loss: 0.12729592 g_loss: 13.56054910
[*] Epoch: [53/80] time: 331.3829s, d_loss: 0.09292125 g_loss: 13.01987563
G and D models saved[*] Epoch: [53/80] time: 331.3829s, d_loss: 0.09292125 g_loss: 13.01987563
[*] Epoch: [54/80] time: 332.3821s, d_loss: 0.13655618 g_loss: 13.18839847
G and D models saved[*] Epoch: [54/80] time: 332.3821s, d_loss: 0.13655618 g_loss: 13.18839847
[*] Epoch: [55/80] time: 331.6998s, d_loss: 0.17412168 g_loss: 13.37218761
G and D models saved[*] Epoch: [55/80] time: 331.6998s, d_loss: 0.17412168 g_loss: 13.37218761
[*] Epoch: [56/80] time: 331.3996s, d_loss: 0.14225041 g_loss: 13.71485350
G and D models saved[*] Epoch: [56/80] time: 331.3996s, d_loss: 0.14225041 g_loss: 13.71485350
[*] Epoch: [57/80] time: 330.5928s, d_loss: 0.20919565 g_loss: 13.34913529
G and D models saved[*] Epoch: [57/80] time: 330.5928s, d_loss: 0.20919565 g_loss: 13.34913529
[*] Epoch: [58/80] time: 331.1728s, d_loss: 0.14070253 g_loss: 13.46666375
G and D models saved[*] Epoch: [58/80] time: 331.1728s, d_loss: 0.14070253 g_loss: 13.46666375
[*] Epoch: [59/80] time: 331.4271s, d_loss: 0.12705338 g_loss: 13.32613606
G and D models saved[*] Epoch: [59/80] time: 331.4271s, d_loss: 0.12705338 g_loss: 13.32613606
[*] Epoch: [60/80] time: 328.3307s, d_loss: 0.19314647 g_loss: 13.59071799
G and D models saved[*] Epoch: [60/80] time: 328.3307s, d_loss: 0.19314647 g_loss: 13.59071799
[*] Epoch: [61/80] time: 331.0769s, d_loss: 0.19778435 g_loss: 13.44583264
G and D models saved[*] Epoch: [61/80] time: 331.0769s, d_loss: 0.19778435 g_loss: 13.44583264
[*] Epoch: [62/80] time: 330.5785s, d_loss: 0.09951729 g_loss: 13.64970836
G and D models saved[*] Epoch: [62/80] time: 330.5785s, d_loss: 0.09951729 g_loss: 13.64970836
[*] Epoch: [63/80] time: 331.1995s, d_loss: 0.12273796 g_loss: 13.58184080
G and D models saved[*] Epoch: [63/80] time: 331.1995s, d_loss: 0.12273796 g_loss: 13.58184080
[*] Epoch: [64/80] time: 330.3128s, d_loss: 0.10152078 g_loss: 13.35909469
G and D models saved[*] Epoch: [64/80] time: 330.3128s, d_loss: 0.10152078 g_loss: 13.35909469
[*] Epoch: [65/80] time: 330.4166s, d_loss: 0.15484139 g_loss: 13.58882491
G and D models saved[*] Epoch: [65/80] time: 330.4166s, d_loss: 0.15484139 g_loss: 13.58882491
[*] Epoch: [66/80] time: 331.9140s, d_loss: 0.10996789 g_loss: 13.39981955
G and D models saved[*] Epoch: [66/80] time: 331.9140s, d_loss: 0.10996789 g_loss: 13.39981955
[*] Epoch: [67/80] time: 331.9355s, d_loss: 0.06273964 g_loss: 13.38503831
G and D models saved[*] Epoch: [67/80] time: 331.9355s, d_loss: 0.06273964 g_loss: 13.38503831
[*] Epoch: [68/80] time: 331.8159s, d_loss: 0.08448350 g_loss: 13.30984677
G and D models saved[*] Epoch: [68/80] time: 331.8159s, d_loss: 0.08448350 g_loss: 13.30984677
[*] Epoch: [69/80] time: 331.3962s, d_loss: 0.07333406 g_loss: 13.63514236
G and D models saved[*] Epoch: [69/80] time: 331.3962s, d_loss: 0.07333406 g_loss: 13.63514236
[*] Epoch: [70/80] time: 330.9241s, d_loss: 0.06383675 g_loss: 13.26536129
G and D models saved[*] Epoch: [70/80] time: 330.9241s, d_loss: 0.06383675 g_loss: 13.26536129
[*] Epoch: [71/80] time: 331.2787s, d_loss: 0.15027083 g_loss: 13.31537858
G and D models saved[*] Epoch: [71/80] time: 331.2787s, d_loss: 0.15027083 g_loss: 13.31537858
[*] Epoch: [72/80] time: 331.3465s, d_loss: 0.35886055 g_loss: 13.04873608
G and D models saved[*] Epoch: [72/80] time: 331.3465s, d_loss: 0.35886055 g_loss: 13.04873608
[*] Epoch: [73/80] time: 322.2238s, d_loss: 0.16540690 g_loss: 13.18060423
G and D models saved[*] Epoch: [73/80] time: 322.2238s, d_loss: 0.16540690 g_loss: 13.18060423
[*] Epoch: [74/80] time: 314.5696s, d_loss: 0.10867802 g_loss: 13.18525668
G and D models saved[*] Epoch: [74/80] time: 314.5696s, d_loss: 0.10867802 g_loss: 13.18525668
[*] Epoch: [75/80] time: 315.5789s, d_loss: 0.10156123 g_loss: 13.33401496
G and D models saved[*] Epoch: [75/80] time: 315.5789s, d_loss: 0.10156123 g_loss: 13.33401496
[*] Epoch: [76/80] time: 312.3791s, d_loss: 0.09150883 g_loss: 13.18714785
G and D models saved[*] Epoch: [76/80] time: 312.3791s, d_loss: 0.09150883 g_loss: 13.18714785
[*] Epoch: [77/80] time: 322.1753s, d_loss: 0.14833802 g_loss: 13.37653146
G and D models saved[*] Epoch: [77/80] time: 322.1753s, d_loss: 0.14833802 g_loss: 13.37653146
[*] Epoch: [78/80] time: 337.4008s, d_loss: 0.05949491 g_loss: 13.44110733
G and D models saved[*] Epoch: [78/80] time: 337.4008s, d_loss: 0.05949491 g_loss: 13.44110733
[*] Epoch: [79/80] time: 339.6469s, d_loss: 0.05941055 g_loss: 13.48408363
G and D models saved ** new learning rate: 0.000001 (for GAN)
[*] Epoch: [80/80] time: 315.7034s, d_loss: 0.05990198 g_loss: 13.15156481
G and D models savedCompleted Loading conv1_1: (3, 3, 3, 64), (64,)
Loading conv1_2: (3, 3, 64, 64), (64,)
Loading conv2_1: (3, 3, 64, 128), (128,)
Loading conv2_2: (3, 3, 128, 128), (128,)
Loading conv3_1: (3, 3, 128, 256), (256,)
Loading conv3_2: (3, 3, 256, 256), (256,)
Loading conv3_3: (3, 3, 256, 256), (256,)
Loading conv3_4: (3, 3, 256, 256), (256,)
Loading conv4_1: (3, 3, 256, 512), (512,)
Loading conv4_2: (3, 3, 512, 512), (512,)
Loading conv4_3: (3, 3, 512, 512), (512,)
Loading conv4_4: (3, 3, 512, 512), (512,)
Loading conv5_1: (3, 3, 512, 512), (512,)
Loading conv5_2: (3, 3, 512, 512), (512,)
Loading conv5_3: (3, 3, 512, 512), (512,)
Loading conv5_4: (3, 3, 512, 512), (512,)
Loading fc6: (25088, 4096), (4096,)
Loading fc7: (4096, 4096), (4096,)
Loading fc8: (4096, 1000), (1000,)
** fixed learning rate: 0.000100 (for init G)running epoch0
Loading conv1_1: (3, 3, 3, 64), (64,)
Loading conv1_2: (3, 3, 64, 64), (64,)
Loading conv2_1: (3, 3, 64, 128), (128,)
Loading conv2_2: (3, 3, 128, 128), (128,)
Loading conv3_1: (3, 3, 128, 256), (256,)
Loading conv3_2: (3, 3, 256, 256), (256,)
Loading conv3_3: (3, 3, 256, 256), (256,)
Loading conv3_4: (3, 3, 256, 256), (256,)
Loading conv4_1: (3, 3, 256, 512), (512,)
Loading conv4_2: (3, 3, 512, 512), (512,)
Loading conv4_3: (3, 3, 512, 512), (512,)
Loading conv4_4: (3, 3, 512, 512), (512,)
Loading conv5_1: (3, 3, 512, 512), (512,)
Loading conv5_2: (3, 3, 512, 512), (512,)
Loading conv5_3: (3, 3, 512, 512), (512,)
Loading conv5_4: (3, 3, 512, 512), (512,)
Loading fc6: (25088, 4096), (4096,)
Loading fc7: (4096, 4096), (4096,)
Loading fc8: (4096, 1000), (1000,)
** fixed learning rate: 0.000100 (for init G)running epoch0
Loading conv1_1: (3, 3, 3, 64), (64,)
Loading conv1_2: (3, 3, 64, 64), (64,)
Loading conv2_1: (3, 3, 64, 128), (128,)
Loading conv2_2: (3, 3, 128, 128), (128,)
Loading conv3_1: (3, 3, 128, 256), (256,)
Loading conv3_2: (3, 3, 256, 256), (256,)
Loading conv3_3: (3, 3, 256, 256), (256,)
Loading conv3_4: (3, 3, 256, 256), (256,)
Loading conv4_1: (3, 3, 256, 512), (512,)
Loading conv4_2: (3, 3, 512, 512), (512,)
Loading conv4_3: (3, 3, 512, 512), (512,)
Loading conv4_4: (3, 3, 512, 512), (512,)
Loading conv5_1: (3, 3, 512, 512), (512,)
Loading conv5_2: (3, 3, 512, 512), (512,)
Loading conv5_3: (3, 3, 512, 512), (512,)
Loading conv5_4: (3, 3, 512, 512), (512,)
Loading fc6: (25088, 4096), (4096,)
Loading fc7: (4096, 4096), (4096,)
Loading fc8: (4096, 1000), (1000,)
** fixed learning rate: 0.000100 (for init G)running epoch0
[*] Epoch: [ 0/60] time: 5.0800s, mse: 0.33824148
G init model saved
running epoch1
[*] Epoch: [ 1/60] time: 3.2787s, mse: 0.21657496
G init model saved
running epoch2
[*] Epoch: [ 2/60] time: 3.2540s, mse: 0.14123578
G init model saved
running epoch3
[*] Epoch: [ 3/60] time: 3.8983s, mse: 0.12350067
G init model saved
running epoch4
[*] Epoch: [ 4/60] time: 3.5031s, mse: 0.10792980
G init model saved
running epoch5
[*] Epoch: [ 5/60] time: 3.3856s, mse: 0.09868292
G init model saved
running epoch6
Loading conv1_1: (3, 3, 3, 64), (64,)
Loading conv1_2: (3, 3, 64, 64), (64,)
Loading conv2_1: (3, 3, 64, 128), (128,)
Loading conv2_2: (3, 3, 128, 128), (128,)
Loading conv3_1: (3, 3, 128, 256), (256,)
Loading conv3_2: (3, 3, 256, 256), (256,)
Loading conv3_3: (3, 3, 256, 256), (256,)
Loading conv3_4: (3, 3, 256, 256), (256,)
Loading conv4_1: (3, 3, 256, 512), (512,)
Loading conv4_2: (3, 3, 512, 512), (512,)
Loading conv4_3: (3, 3, 512, 512), (512,)
Loading conv4_4: (3, 3, 512, 512), (512,)
Loading conv5_1: (3, 3, 512, 512), (512,)
Loading conv5_2: (3, 3, 512, 512), (512,)
Loading conv5_3: (3, 3, 512, 512), (512,)
Loading conv5_4: (3, 3, 512, 512), (512,)
Loading fc6: (25088, 4096), (4096,)
Loading fc7: (4096, 4096), (4096,)
Loading fc8: (4096, 1000), (1000,)
** fixed learning rate: 0.000100 (for init G)running epoch0
[*] Epoch: [ 0/60] time: 4.9760s, mse: 0.33557847
G init model saved
running epoch1
[*] Epoch: [ 1/60] time: 3.8950s, mse: 0.20981226
G init model saved
running epoch2
[*] Epoch: [ 2/60] time: 3.5863s, mse: 0.14720988
G init model saved
running epoch3
[*] Epoch: [ 3/60] time: 3.4678s, mse: 0.11431443
G init model saved
running epoch4
[*] Epoch: [ 4/60] time: 3.5381s, mse: 0.11087893
G init model saved
running epoch5
[*] Epoch: [ 5/60] time: 3.3778s, mse: 0.09853076
G init model saved
running epoch6
Loading conv1_1: (3, 3, 3, 64), (64,)
Loading conv1_2: (3, 3, 64, 64), (64,)
Loading conv2_1: (3, 3, 64, 128), (128,)
Loading conv2_2: (3, 3, 128, 128), (128,)
Loading conv3_1: (3, 3, 128, 256), (256,)
Loading conv3_2: (3, 3, 256, 256), (256,)
Loading conv3_3: (3, 3, 256, 256), (256,)
Loading conv3_4: (3, 3, 256, 256), (256,)
Loading conv4_1: (3, 3, 256, 512), (512,)
Loading conv4_2: (3, 3, 512, 512), (512,)
Loading conv4_3: (3, 3, 512, 512), (512,)
Loading conv4_4: (3, 3, 512, 512), (512,)
Loading conv5_1: (3, 3, 512, 512), (512,)
Loading conv5_2: (3, 3, 512, 512), (512,)
Loading conv5_3: (3, 3, 512, 512), (512,)
Loading conv5_4: (3, 3, 512, 512), (512,)
Loading fc6: (25088, 4096), (4096,)
Loading fc7: (4096, 4096), (4096,)
Loading fc8: (4096, 1000), (1000,)
** fixed learning rate: 0.000100 (for init G)[*] Epoch: [ 0/60] time: 4.9512s, mse: 0.34528483
G init model saved
[*] Epoch: [ 1/60] time: 3.3070s, mse: 0.19817208
G init model saved
[*] Epoch: [ 2/60] time: 3.2641s, mse: 0.13872075
G init model saved
[*] Epoch: [ 3/60] time: 3.9295s, mse: 0.11482271
G init model saved
[*] Epoch: [ 4/60] time: 3.3472s, mse: 0.10332721
G init model saved
Loading conv1_1: (3, 3, 3, 64), (64,)
Loading conv1_2: (3, 3, 64, 64), (64,)
Loading conv2_1: (3, 3, 64, 128), (128,)
Loading conv2_2: (3, 3, 128, 128), (128,)
Loading conv3_1: (3, 3, 128, 256), (256,)
Loading conv3_2: (3, 3, 256, 256), (256,)
Loading conv3_3: (3, 3, 256, 256), (256,)
Loading conv3_4: (3, 3, 256, 256), (256,)
Loading conv4_1: (3, 3, 256, 512), (512,)
Loading conv4_2: (3, 3, 512, 512), (512,)
Loading conv4_3: (3, 3, 512, 512), (512,)
Loading conv4_4: (3, 3, 512, 512), (512,)
Loading conv5_1: (3, 3, 512, 512), (512,)
Loading conv5_2: (3, 3, 512, 512), (512,)
Loading conv5_3: (3, 3, 512, 512), (512,)
Loading conv5_4: (3, 3, 512, 512), (512,)
Loading fc6: (25088, 4096), (4096,)
Loading fc7: (4096, 4096), (4096,)
Loading fc8: (4096, 1000), (1000,)
** fixed learning rate: 0.000100 (for init G)[*] Epoch: [ 0/60] time: 5.0212s, mse: 0.34675398
G init model saved
[*] Epoch: [ 1/60] time: 3.2121s, mse: 0.19043916
G init model saved
[*] Epoch: [ 2/60] time: 3.2276s, mse: 0.14008682
G init model saved
[*] Epoch: [ 3/60] time: 3.2470s, mse: 0.12206232
G init model saved
[*] Epoch: [ 4/60] time: 3.8953s, mse: 0.11298210
G init model saved
[*] Epoch: [ 5/60] time: 3.6953s, mse: 0.10212166
G init model saved
[*] Epoch: [ 6/60] time: 3.3640s, mse: 0.09679140
G init model saved
[*] Epoch: [ 7/60] time: 3.3625s, mse: 0.09501588
G init model saved
[*] Epoch: [ 8/60] time: 3.3518s, mse: 0.09276697
G init model saved
[*] Epoch: [ 9/60] time: 3.3418s, mse: 0.09227675
G init model saved
[*] Epoch: [10/60] time: 3.4152s, mse: 0.08997471
G init model saved
[*] Epoch: [11/60] time: 3.3431s, mse: 0.09105126
G init model saved
[*] Epoch: [12/60] time: 3.3789s, mse: 0.08823404
G init model saved
[*] Epoch: [13/60] time: 3.4048s, mse: 0.08664140
G init model saved
[*] Epoch: [14/60] time: 3.3582s, mse: 0.09434915
G init model saved
[*] Epoch: [15/60] time: 3.3508s, mse: 0.09321370
G init model saved
[*] Epoch: [16/60] time: 3.3667s, mse: 0.08504170
G init model saved
[*] Epoch: [17/60] time: 3.3409s, mse: 0.08209231
G init model saved
[*] Epoch: [18/60] time: 3.3448s, mse: 0.08201422
G init model saved
[*] Epoch: [19/60] time: 3.3718s, mse: 0.08456293
G init model saved
[*] Epoch: [20/60] time: 3.3642s, mse: 0.08443849
G init model saved
[*] Epoch: [21/60] time: 3.3504s, mse: 0.08215061
G init model saved
[*] Epoch: [22/60] time: 3.3778s, mse: 0.08718860
G init model saved
[*] Epoch: [23/60] time: 3.3661s, mse: 0.08425538
G init model saved
[*] Epoch: [24/60] time: 3.3219s, mse: 0.08253218
G init model saved
[*] Epoch: [25/60] time: 3.3632s, mse: 0.08370405
G init model saved
[*] Epoch: [26/60] time: 3.3763s, mse: 0.08196055
G init model saved
[*] Epoch: [27/60] time: 3.3492s, mse: 0.08282023
G init model saved
[*] Epoch: [28/60] time: 3.3458s, mse: 0.07808762
G init model saved
[*] Epoch: [29/60] time: 3.3862s, mse: 0.08061419
G init model saved
[*] Epoch: [30/60] time: 3.3303s, mse: 0.08094724
G init model saved
[*] Epoch: [31/60] time: 3.3679s, mse: 0.08466259
G init model saved
[*] Epoch: [32/60] time: 3.3712s, mse: 0.07758722
G init model saved
[*] Epoch: [33/60] time: 3.3773s, mse: 0.07630974
G init model saved
[*] Epoch: [34/60] time: 3.3287s, mse: 0.07577228
G init model saved
[*] Epoch: [35/60] time: 3.3489s, mse: 0.08183411
G init model saved
[*] Epoch: [36/60] time: 3.3749s, mse: 0.07385960
G init model saved
[*] Epoch: [37/60] time: 3.3120s, mse: 0.07871929
G init model saved
[*] Epoch: [38/60] time: 3.3592s, mse: 0.07321219
G init model saved
[*] Epoch: [39/60] time: 3.3736s, mse: 0.07434779
G init model saved
[*] Epoch: [40/60] time: 3.3373s, mse: 0.07533553
G init model saved
[*] Epoch: [41/60] time: 3.3616s, mse: 0.07664172
G init model saved
[*] Epoch: [42/60] time: 3.3946s, mse: 0.07406851
G init model saved
[*] Epoch: [43/60] time: 3.4146s, mse: 0.07742414
G init model saved
[*] Epoch: [44/60] time: 3.3627s, mse: 0.07647521
G init model saved
[*] Epoch: [45/60] time: 3.4166s, mse: 0.07302856
G init model saved
[*] Epoch: [46/60] time: 3.3629s, mse: 0.07361802
G init model saved
[*] Epoch: [47/60] time: 3.3966s, mse: 0.06829290
G init model saved
[*] Epoch: [48/60] time: 3.3650s, mse: 0.07315198
G init model saved
[*] Epoch: [49/60] time: 3.3799s, mse: 0.07199867
G init model saved
[*] Epoch: [50/60] time: 3.4168s, mse: 0.07186841
G init model saved
[*] Epoch: [51/60] time: 3.3875s, mse: 0.06855003
G init model saved
[*] Epoch: [52/60] time: 3.3690s, mse: 0.07245320
G init model saved
[*] Epoch: [53/60] time: 3.3724s, mse: 0.07343077
G init model saved
[*] Epoch: [54/60] time: 3.3799s, mse: 0.07688202
G init model saved
[*] Epoch: [55/60] time: 3.4097s, mse: 0.07681966
G init model saved
[*] Epoch: [56/60] time: 3.3775s, mse: 0.06860071
G init model saved
[*] Epoch: [57/60] time: 3.3800s, mse: 0.07173616
G init model saved
[*] Epoch: [58/60] time: 3.3705s, mse: 0.06865859
G init model saved
[*] Epoch: [59/60] time: 3.3523s, mse: 0.07138622
G init model saved
[*] Epoch: [60/60] time: 3.3170s, mse: 0.06710005
G init model saved
** init lr: 0.000100 decay_every_init: 150, lr_decay: 0.100000 (for GAN)
[*] Epoch: [ 0/300] time: 297.4280s, d_loss: 1.40956712 g_loss: 18.51981424
G and D models saved[*] Epoch: [ 0/300] time: 297.4280s, d_loss: 1.40956712 g_loss: 18.51981424
[*] Epoch: [ 1/300] time: 294.2756s, d_loss: 1.36805194 g_loss: 17.35942809
G and D models saved[*] Epoch: [ 1/300] time: 294.2756s, d_loss: 1.36805194 g_loss: 17.35942809
[*] Epoch: [ 2/300] time: 290.4843s, d_loss: 1.33919369 g_loss: 16.43868588
G and D models saved[*] Epoch: [ 2/300] time: 290.4843s, d_loss: 1.33919369 g_loss: 16.43868588
[*] Epoch: [ 3/300] time: 293.8558s, d_loss: 1.27997750 g_loss: 16.41412325
G and D models saved[*] Epoch: [ 3/300] time: 293.8558s, d_loss: 1.27997750 g_loss: 16.41412325
[*] Epoch: [ 4/300] time: 294.8532s, d_loss: 1.20271811 g_loss: 16.44411313
G and D models saved[*] Epoch: [ 4/300] time: 294.8532s, d_loss: 1.20271811 g_loss: 16.44411313
[*] Epoch: [ 5/300] time: 294.3722s, d_loss: 1.12604568 g_loss: 16.14185807
G and D models saved[*] Epoch: [ 5/300] time: 294.3722s, d_loss: 1.12604568 g_loss: 16.14185807
[*] Epoch: [ 6/300] time: 294.8044s, d_loss: 1.03476480 g_loss: 15.78951013
G and D models saved[*] Epoch: [ 6/300] time: 294.8044s, d_loss: 1.03476480 g_loss: 15.78951013
[*] Epoch: [ 7/300] time: 295.2936s, d_loss: 1.04458499 g_loss: 15.67335249
G and D models saved[*] Epoch: [ 7/300] time: 295.2936s, d_loss: 1.04458499 g_loss: 15.67335249
[*] Epoch: [ 8/300] time: 292.7302s, d_loss: 0.81141030 g_loss: 15.49287400
G and D models saved[*] Epoch: [ 8/300] time: 292.7302s, d_loss: 0.81141030 g_loss: 15.49287400
[*] Epoch: [ 9/300] time: 291.3559s, d_loss: 0.88904720 g_loss: 15.06701568
G and D models saved[*] Epoch: [ 9/300] time: 291.3559s, d_loss: 0.88904720 g_loss: 15.06701568
[*] Epoch: [10/300] time: 290.1243s, d_loss: 1.06272852 g_loss: 15.30193760
G and D models saved[*] Epoch: [10/300] time: 290.1243s, d_loss: 1.06272852 g_loss: 15.30193760
[*] Epoch: [11/300] time: 293.9353s, d_loss: 0.90477974 g_loss: 15.00126457
G and D models saved[*] Epoch: [11/300] time: 293.9353s, d_loss: 0.90477974 g_loss: 15.00126457
[*] Epoch: [12/300] time: 293.7786s, d_loss: 0.81676188 g_loss: 15.29322338
G and D models saved[*] Epoch: [12/300] time: 293.7786s, d_loss: 0.81676188 g_loss: 15.29322338
[*] Epoch: [13/300] time: 292.1556s, d_loss: 0.69943109 g_loss: 14.66004601
G and D models saved[*] Epoch: [13/300] time: 292.1556s, d_loss: 0.69943109 g_loss: 14.66004601
[*] Epoch: [14/300] time: 291.7289s, d_loss: 0.57126514 g_loss: 14.90225142
G and D models saved[*] Epoch: [14/300] time: 291.7289s, d_loss: 0.57126514 g_loss: 14.90225142
[*] Epoch: [15/300] time: 301.1226s, d_loss: 0.67187354 g_loss: 14.87270761
G and D models saved[*] Epoch: [15/300] time: 301.1226s, d_loss: 0.67187354 g_loss: 14.87270761
[*] Epoch: [16/300] time: 299.7732s, d_loss: 0.58035845 g_loss: 15.02258092
G and D models saved[*] Epoch: [16/300] time: 299.7732s, d_loss: 0.58035845 g_loss: 15.02258092
[*] Epoch: [17/300] time: 299.2787s, d_loss: 0.81282519 g_loss: 14.81280638
G and D models saved[*] Epoch: [17/300] time: 299.2787s, d_loss: 0.81282519 g_loss: 14.81280638
[*] Epoch: [18/300] time: 299.7643s, d_loss: 0.72781551 g_loss: 14.65435392
G and D models saved[*] Epoch: [18/300] time: 299.7643s, d_loss: 0.72781551 g_loss: 14.65435392
[*] Epoch: [19/300] time: 300.8872s, d_loss: 0.49450149 g_loss: 14.67865753
G and D models saved[*] Epoch: [19/300] time: 300.8872s, d_loss: 0.49450149 g_loss: 14.67865753
[*] Epoch: [20/300] time: 297.6622s, d_loss: 0.52336914 g_loss: 14.69587722
G and D models saved[*] Epoch: [20/300] time: 297.6622s, d_loss: 0.52336914 g_loss: 14.69587722
[*] Epoch: [21/300] time: 294.8776s, d_loss: 0.49674996 g_loss: 14.59365693
G and D models saved[*] Epoch: [21/300] time: 294.8776s, d_loss: 0.49674996 g_loss: 14.59365693
[*] Epoch: [22/300] time: 297.6343s, d_loss: 0.72351406 g_loss: 14.91079963
G and D models saved[*] Epoch: [22/300] time: 297.6343s, d_loss: 0.72351406 g_loss: 14.91079963
[*] Epoch: [23/300] time: 300.4264s, d_loss: 0.83850082 g_loss: 14.42734075
G and D models saved[*] Epoch: [23/300] time: 300.4264s, d_loss: 0.83850082 g_loss: 14.42734075
[*] Epoch: [24/300] time: 295.0612s, d_loss: 0.56066848 g_loss: 14.36846963
G and D models saved[*] Epoch: [24/300] time: 295.0612s, d_loss: 0.56066848 g_loss: 14.36846963
[*] Epoch: [25/300] time: 297.5302s, d_loss: 0.40326098 g_loss: 14.07235622
G and D models saved[*] Epoch: [25/300] time: 297.5302s, d_loss: 0.40326098 g_loss: 14.07235622
[*] Epoch: [26/300] time: 295.8518s, d_loss: 1.10239878 g_loss: 14.34694502
G and D models saved[*] Epoch: [26/300] time: 295.8518s, d_loss: 1.10239878 g_loss: 14.34694502
[*] Epoch: [27/300] time: 298.0363s, d_loss: 0.35318075 g_loss: 14.24312136
G and D models saved[*] Epoch: [27/300] time: 298.0363s, d_loss: 0.35318075 g_loss: 14.24312136
[*] Epoch: [28/300] time: 293.9894s, d_loss: 0.44301877 g_loss: 14.02777181
G and D models saved[*] Epoch: [28/300] time: 293.9894s, d_loss: 0.44301877 g_loss: 14.02777181
[*] Epoch: [29/300] time: 294.5957s, d_loss: 0.60449359 g_loss: 13.75324398
G and D models saved[*] Epoch: [29/300] time: 294.5957s, d_loss: 0.60449359 g_loss: 13.75324398
[*] Epoch: [30/300] time: 293.3848s, d_loss: 0.55441667 g_loss: 14.12012478
G and D models saved[*] Epoch: [30/300] time: 293.3848s, d_loss: 0.55441667 g_loss: 14.12012478
[*] Epoch: [31/300] time: 293.0737s, d_loss: 0.49003566 g_loss: 13.95706067
G and D models saved[*] Epoch: [31/300] time: 293.0737s, d_loss: 0.49003566 g_loss: 13.95706067
[*] Epoch: [32/300] time: 295.9580s, d_loss: 1.13103506 g_loss: 14.18085685
G and D models saved[*] Epoch: [32/300] time: 295.9580s, d_loss: 1.13103506 g_loss: 14.18085685
[*] Epoch: [33/300] time: 298.1891s, d_loss: 0.56286651 g_loss: 13.92824780
G and D models saved[*] Epoch: [33/300] time: 298.1891s, d_loss: 0.56286651 g_loss: 13.92824780
[*] Epoch: [34/300] time: 295.5113s, d_loss: 0.45363384 g_loss: 13.68021697
G and D models saved[*] Epoch: [34/300] time: 295.5113s, d_loss: 0.45363384 g_loss: 13.68021697
[*] Epoch: [35/300] time: 293.9685s, d_loss: 0.30644694 g_loss: 13.84586083
G and D models saved[*] Epoch: [35/300] time: 293.9685s, d_loss: 0.30644694 g_loss: 13.84586083
[*] Epoch: [36/300] time: 295.1523s, d_loss: 0.32836185 g_loss: 13.53630122
G and D models saved[*] Epoch: [36/300] time: 295.1523s, d_loss: 0.32836185 g_loss: 13.53630122
[*] Epoch: [37/300] time: 294.7661s, d_loss: 0.25906068 g_loss: 13.90236897
G and D models saved[*] Epoch: [37/300] time: 294.7661s, d_loss: 0.25906068 g_loss: 13.90236897
[*] Epoch: [38/300] time: 294.4860s, d_loss: 0.37359930 g_loss: 13.84694064
G and D models saved[*] Epoch: [38/300] time: 294.4860s, d_loss: 0.37359930 g_loss: 13.84694064
[*] Epoch: [39/300] time: 291.6817s, d_loss: 0.64510570 g_loss: 13.58261066
G and D models saved[*] Epoch: [39/300] time: 291.6817s, d_loss: 0.64510570 g_loss: 13.58261066
[*] Epoch: [40/300] time: 291.5060s, d_loss: 1.20813809 g_loss: 13.64377848
G and D models saved[*] Epoch: [40/300] time: 291.5060s, d_loss: 1.20813809 g_loss: 13.64377848
[*] Epoch: [41/300] time: 290.1530s, d_loss: 0.45252262 g_loss: 13.79872361
G and D models saved[*] Epoch: [41/300] time: 290.1530s, d_loss: 0.45252262 g_loss: 13.79872361
[*] Epoch: [42/300] time: 295.2982s, d_loss: 0.33184967 g_loss: 13.77056062
G and D models saved[*] Epoch: [42/300] time: 295.2982s, d_loss: 0.33184967 g_loss: 13.77056062
[*] Epoch: [43/300] time: 295.1688s, d_loss: 0.22108820 g_loss: 13.43814659
G and D models saved[*] Epoch: [43/300] time: 295.1688s, d_loss: 0.22108820 g_loss: 13.43814659
[*] Epoch: [44/300] time: 292.0518s, d_loss: 0.14628869 g_loss: 13.76702415
G and D models saved[*] Epoch: [44/300] time: 292.0518s, d_loss: 0.14628869 g_loss: 13.76702415
[*] Epoch: [45/300] time: 292.7755s, d_loss: 0.32622353 g_loss: 13.58018031
G and D models saved[*] Epoch: [45/300] time: 292.7755s, d_loss: 0.32622353 g_loss: 13.58018031
[*] Epoch: [46/300] time: 290.8868s, d_loss: 0.21250392 g_loss: 13.20095868
G and D models saved[*] Epoch: [46/300] time: 290.8868s, d_loss: 0.21250392 g_loss: 13.20095868
[*] Epoch: [47/300] time: 292.2723s, d_loss: 0.64152886 g_loss: 13.26060461
G and D models saved[*] Epoch: [47/300] time: 292.2723s, d_loss: 0.64152886 g_loss: 13.26060461
[*] Epoch: [48/300] time: 289.3672s, d_loss: 0.18164663 g_loss: 13.19697610
G and D models saved[*] Epoch: [48/300] time: 289.3672s, d_loss: 0.18164663 g_loss: 13.19697610
[*] Epoch: [49/300] time: 291.2848s, d_loss: 0.42759907 g_loss: 13.57050355
G and D models saved[*] Epoch: [49/300] time: 291.2848s, d_loss: 0.42759907 g_loss: 13.57050355
[*] Epoch: [50/300] time: 295.0970s, d_loss: 1.26896512 g_loss: 13.25864852
G and D models saved[*] Epoch: [50/300] time: 295.0970s, d_loss: 1.26896512 g_loss: 13.25864852
[*] Epoch: [51/300] time: 294.1842s, d_loss: 0.41695863 g_loss: 13.43862950
G and D models saved[*] Epoch: [51/300] time: 294.1842s, d_loss: 0.41695863 g_loss: 13.43862950
[*] Epoch: [52/300] time: 292.4033s, d_loss: 0.21760072 g_loss: 13.12308859
G and D models saved[*] Epoch: [52/300] time: 292.4033s, d_loss: 0.21760072 g_loss: 13.12308859
[*] Epoch: [53/300] time: 293.1341s, d_loss: 0.15509392 g_loss: 13.39047368
G and D models saved[*] Epoch: [53/300] time: 293.1341s, d_loss: 0.15509392 g_loss: 13.39047368
[*] Epoch: [54/300] time: 298.3008s, d_loss: 0.29096151 g_loss: 13.53465324
G and D models saved[*] Epoch: [54/300] time: 298.3008s, d_loss: 0.29096151 g_loss: 13.53465324
[*] Epoch: [55/300] time: 295.9449s, d_loss: 0.26679664 g_loss: 13.40410469
G and D models saved[*] Epoch: [55/300] time: 295.9449s, d_loss: 0.26679664 g_loss: 13.40410469
[*] Epoch: [56/300] time: 295.4615s, d_loss: 0.34974577 g_loss: 13.07576854
G and D models saved[*] Epoch: [56/300] time: 295.4615s, d_loss: 0.34974577 g_loss: 13.07576854
[*] Epoch: [57/300] time: 295.2632s, d_loss: 0.46690206 g_loss: 13.14155536
G and D models saved[*] Epoch: [57/300] time: 295.2632s, d_loss: 0.46690206 g_loss: 13.14155536
[*] Epoch: [58/300] time: 299.5978s, d_loss: 0.31202977 g_loss: 13.34640944
G and D models saved[*] Epoch: [58/300] time: 299.5978s, d_loss: 0.31202977 g_loss: 13.34640944
[*] Epoch: [59/300] time: 296.6315s, d_loss: 0.23868688 g_loss: 13.05832718
G and D models saved[*] Epoch: [59/300] time: 296.6315s, d_loss: 0.23868688 g_loss: 13.05832718
[*] Epoch: [60/300] time: 298.0682s, d_loss: 0.46745966 g_loss: 13.02207389
G and D models saved[*] Epoch: [60/300] time: 298.0682s, d_loss: 0.46745966 g_loss: 13.02207389
[*] Epoch: [61/300] time: 297.8626s, d_loss: 0.32561269 g_loss: 13.04492053
G and D models saved[*] Epoch: [61/300] time: 297.8626s, d_loss: 0.32561269 g_loss: 13.04492053
[*] Epoch: [62/300] time: 297.7748s, d_loss: 0.13379368 g_loss: 12.95434652
G and D models saved[*] Epoch: [62/300] time: 297.7748s, d_loss: 0.13379368 g_loss: 12.95434652
[*] Epoch: [63/300] time: 297.9367s, d_loss: 0.17573246 g_loss: 13.10064994
G and D models saved[*] Epoch: [63/300] time: 297.9367s, d_loss: 0.17573246 g_loss: 13.10064994
[*] Epoch: [64/300] time: 298.9479s, d_loss: 0.11666246 g_loss: 13.13158540
G and D models saved[*] Epoch: [64/300] time: 298.9479s, d_loss: 0.11666246 g_loss: 13.13158540
[*] Epoch: [65/300] time: 296.4942s, d_loss: 0.17666525 g_loss: 12.93548828
G and D models saved[*] Epoch: [65/300] time: 296.4942s, d_loss: 0.17666525 g_loss: 12.93548828
[*] Epoch: [66/300] time: 297.6963s, d_loss: 0.09134481 g_loss: 12.85830809
G and D models saved[*] Epoch: [66/300] time: 297.6963s, d_loss: 0.09134481 g_loss: 12.85830809
[*] Epoch: [67/300] time: 297.0408s, d_loss: 0.15820743 g_loss: 12.82620995
G and D models saved[*] Epoch: [67/300] time: 297.0408s, d_loss: 0.15820743 g_loss: 12.82620995
[*] Epoch: [68/300] time: 297.0711s, d_loss: 0.97712405 g_loss: 12.83439746
G and D models saved[*] Epoch: [68/300] time: 297.0711s, d_loss: 0.97712405 g_loss: 12.83439746
[*] Epoch: [69/300] time: 295.6262s, d_loss: 1.02860883 g_loss: 13.12359856
G and D models saved[*] Epoch: [69/300] time: 295.6262s, d_loss: 1.02860883 g_loss: 13.12359856
[*] Epoch: [70/300] time: 296.4471s, d_loss: 0.61288809 g_loss: 12.72075250
G and D models saved[*] Epoch: [70/300] time: 296.4471s, d_loss: 0.61288809 g_loss: 12.72075250
[*] Epoch: [71/300] time: 297.6822s, d_loss: 0.58747666 g_loss: 12.70316537
G and D models saved[*] Epoch: [71/300] time: 297.6822s, d_loss: 0.58747666 g_loss: 12.70316537
[*] Epoch: [72/300] time: 299.5663s, d_loss: 0.39149407 g_loss: 12.60229065
G and D models saved[*] Epoch: [72/300] time: 299.5663s, d_loss: 0.39149407 g_loss: 12.60229065
[*] Epoch: [73/300] time: 300.2400s, d_loss: 0.13517429 g_loss: 12.84632775
G and D models saved[*] Epoch: [73/300] time: 300.2400s, d_loss: 0.13517429 g_loss: 12.84632775
[*] Epoch: [74/300] time: 298.4999s, d_loss: 0.13608221 g_loss: 12.80528955
G and D models saved[*] Epoch: [74/300] time: 298.4999s, d_loss: 0.13608221 g_loss: 12.80528955
[*] Epoch: [75/300] time: 292.7735s, d_loss: 0.16456044 g_loss: 12.68590051
G and D models saved[*] Epoch: [75/300] time: 292.7735s, d_loss: 0.16456044 g_loss: 12.68590051
[*] Epoch: [76/300] time: 295.8204s, d_loss: 0.19319561 g_loss: 12.68162155
G and D models saved[*] Epoch: [76/300] time: 295.8204s, d_loss: 0.19319561 g_loss: 12.68162155
[*] Epoch: [77/300] time: 303.0589s, d_loss: 0.26207528 g_loss: 12.67639856
G and D models saved[*] Epoch: [77/300] time: 303.0589s, d_loss: 0.26207528 g_loss: 12.67639856
[*] Epoch: [78/300] time: 295.2754s, d_loss: 0.29185747 g_loss: 12.55220286
G and D models saved[*] Epoch: [78/300] time: 295.2754s, d_loss: 0.29185747 g_loss: 12.55220286
[*] Epoch: [79/300] time: 295.0312s, d_loss: 0.10313390 g_loss: 12.46083426
G and D models saved[*] Epoch: [79/300] time: 295.0312s, d_loss: 0.10313390 g_loss: 12.46083426
[*] Epoch: [80/300] time: 299.7858s, d_loss: 0.21689230 g_loss: 12.81796794
G and D models saved[*] Epoch: [80/300] time: 299.7858s, d_loss: 0.21689230 g_loss: 12.81796794
[*] Epoch: [81/300] time: 297.4543s, d_loss: 0.19348819 g_loss: 12.25838025
G and D models saved[*] Epoch: [81/300] time: 297.4543s, d_loss: 0.19348819 g_loss: 12.25838025
[*] Epoch: [82/300] time: 296.6225s, d_loss: 0.57438602 g_loss: 12.56731908
G and D models saved[*] Epoch: [82/300] time: 296.6225s, d_loss: 0.57438602 g_loss: 12.56731908
[*] Epoch: [83/300] time: 294.2779s, d_loss: 0.20849134 g_loss: 12.67393525
G and D models saved[*] Epoch: [83/300] time: 294.2779s, d_loss: 0.20849134 g_loss: 12.67393525
[*] Epoch: [84/300] time: 292.6437s, d_loss: 0.18880191 g_loss: 12.34428254
G and D models saved[*] Epoch: [84/300] time: 292.6437s, d_loss: 0.18880191 g_loss: 12.34428254
[*] Epoch: [85/300] time: 299.6675s, d_loss: 0.19983716 g_loss: 12.30100229
G and D models saved[*] Epoch: [85/300] time: 299.6675s, d_loss: 0.19983716 g_loss: 12.30100229
[*] Epoch: [86/300] time: 298.9245s, d_loss: 0.04623097 g_loss: 12.32139764
G and D models saved[*] Epoch: [86/300] time: 298.9245s, d_loss: 0.04623097 g_loss: 12.32139764
[*] Epoch: [87/300] time: 299.1002s, d_loss: 0.03558937 g_loss: 12.38513706
G and D models saved[*] Epoch: [87/300] time: 299.1002s, d_loss: 0.03558937 g_loss: 12.38513706
[*] Epoch: [88/300] time: 298.4374s, d_loss: 0.04725116 g_loss: 12.74596744
G and D models saved[*] Epoch: [88/300] time: 298.4374s, d_loss: 0.04725116 g_loss: 12.74596744
[*] Epoch: [89/300] time: 298.0361s, d_loss: 0.36168259 g_loss: 12.35702285
G and D models saved[*] Epoch: [89/300] time: 298.0361s, d_loss: 0.36168259 g_loss: 12.35702285
[*] Epoch: [90/300] time: 296.9812s, d_loss: 0.22791792 g_loss: 12.29142694
G and D models saved[*] Epoch: [90/300] time: 296.9812s, d_loss: 0.22791792 g_loss: 12.29142694
[*] Epoch: [91/300] time: 297.0124s, d_loss: 0.34408859 g_loss: 12.41974326
G and D models saved[*] Epoch: [91/300] time: 297.0124s, d_loss: 0.34408859 g_loss: 12.41974326
[*] Epoch: [92/300] time: 299.0847s, d_loss: 0.12570804 g_loss: 12.26774530
G and D models saved[*] Epoch: [92/300] time: 299.0847s, d_loss: 0.12570804 g_loss: 12.26774530
[*] Epoch: [93/300] time: 297.3219s, d_loss: 0.05692190 g_loss: 12.61067065
G and D models saved[*] Epoch: [93/300] time: 297.3219s, d_loss: 0.05692190 g_loss: 12.61067065
[*] Epoch: [94/300] time: 297.0086s, d_loss: 0.05084801 g_loss: 12.03873242
G and D models saved[*] Epoch: [94/300] time: 297.0086s, d_loss: 0.05084801 g_loss: 12.03873242
[*] Epoch: [95/300] time: 294.8004s, d_loss: 0.10262365 g_loss: 12.35909151
G and D models saved[*] Epoch: [95/300] time: 294.8004s, d_loss: 0.10262365 g_loss: 12.35909151
[*] Epoch: [96/300] time: 294.1714s, d_loss: 0.11915387 g_loss: 12.28188741
G and D models saved[*] Epoch: [96/300] time: 294.1714s, d_loss: 0.11915387 g_loss: 12.28188741
[*] Epoch: [97/300] time: 291.6949s, d_loss: 0.63477440 g_loss: 12.11368148
G and D models saved[*] Epoch: [97/300] time: 291.6949s, d_loss: 0.63477440 g_loss: 12.11368148
[*] Epoch: [98/300] time: 292.8592s, d_loss: 0.08433060 g_loss: 12.19134769
G and D models saved[*] Epoch: [98/300] time: 292.8592s, d_loss: 0.08433060 g_loss: 12.19134769
[*] Epoch: [99/300] time: 293.4737s, d_loss: 0.37181795 g_loss: 12.14446742
G and D models saved[*] Epoch: [99/300] time: 293.4737s, d_loss: 0.37181795 g_loss: 12.14446742
[*] Epoch: [100/300] time: 292.3483s, d_loss: 0.30861914 g_loss: 12.34126974
G and D models saved[*] Epoch: [100/300] time: 292.3483s, d_loss: 0.30861914 g_loss: 12.34126974
[*] Epoch: [101/300] time: 293.7310s, d_loss: 0.25493204 g_loss: 12.14705948
G and D models saved[*] Epoch: [101/300] time: 293.7310s, d_loss: 0.25493204 g_loss: 12.14705948
[*] Epoch: [102/300] time: 292.9611s, d_loss: 0.09808392 g_loss: 12.20227623
G and D models saved[*] Epoch: [102/300] time: 292.9611s, d_loss: 0.09808392 g_loss: 12.20227623
[*] Epoch: [103/300] time: 290.8810s, d_loss: 0.02902850 g_loss: 11.97257155
G and D models saved[*] Epoch: [103/300] time: 290.8810s, d_loss: 0.02902850 g_loss: 11.97257155
[*] Epoch: [104/300] time: 291.0160s, d_loss: 0.04516167 g_loss: 12.11947494
G and D models saved[*] Epoch: [104/300] time: 291.0160s, d_loss: 0.04516167 g_loss: 12.11947494
[*] Epoch: [105/300] time: 292.6976s, d_loss: 0.01892177 g_loss: 12.30459637
G and D models saved[*] Epoch: [105/300] time: 292.6976s, d_loss: 0.01892177 g_loss: 12.30459637
[*] Epoch: [106/300] time: 291.3734s, d_loss: 0.02322254 g_loss: 11.98310884
G and D models saved[*] Epoch: [106/300] time: 291.3734s, d_loss: 0.02322254 g_loss: 11.98310884
[*] Epoch: [107/300] time: 291.0169s, d_loss: 0.01820965 g_loss: 11.94875184
G and D models saved[*] Epoch: [107/300] time: 291.0169s, d_loss: 0.01820965 g_loss: 11.94875184
[*] Epoch: [108/300] time: 291.0422s, d_loss: 0.02518942 g_loss: 12.09155510
G and D models saved[*] Epoch: [108/300] time: 291.0422s, d_loss: 0.02518942 g_loss: 12.09155510
[*] Epoch: [109/300] time: 290.9229s, d_loss: 0.21682827 g_loss: 12.18424197
G and D models saved[*] Epoch: [109/300] time: 290.9229s, d_loss: 0.21682827 g_loss: 12.18424197
[*] Epoch: [110/300] time: 290.8566s, d_loss: 0.03292333 g_loss: 12.03150071
G and D models saved[*] Epoch: [110/300] time: 290.8566s, d_loss: 0.03292333 g_loss: 12.03150071
[*] Epoch: [111/300] time: 292.3748s, d_loss: 0.02843926 g_loss: 12.12632091
G and D models saved[*] Epoch: [111/300] time: 292.3748s, d_loss: 0.02843926 g_loss: 12.12632091
[*] Epoch: [112/300] time: 293.1136s, d_loss: 0.02205739 g_loss: 12.18900235
G and D models saved[*] Epoch: [112/300] time: 293.1136s, d_loss: 0.02205739 g_loss: 12.18900235
[*] Epoch: [113/300] time: 289.6297s, d_loss: 0.01755884 g_loss: 12.16776643
G and D models saved[*] Epoch: [113/300] time: 289.6297s, d_loss: 0.01755884 g_loss: 12.16776643
[*] Epoch: [114/300] time: 292.6288s, d_loss: 0.01349171 g_loss: 12.03380899
G and D models saved[*] Epoch: [114/300] time: 292.6288s, d_loss: 0.01349171 g_loss: 12.03380899
[*] Epoch: [115/300] time: 290.6858s, d_loss: 0.15582386 g_loss: 11.87396424
G and D models saved[*] Epoch: [115/300] time: 290.6858s, d_loss: 0.15582386 g_loss: 11.87396424
[*] Epoch: [116/300] time: 290.9589s, d_loss: 0.06478710 g_loss: 11.95649539
G and D models saved[*] Epoch: [116/300] time: 290.9589s, d_loss: 0.06478710 g_loss: 11.95649539
[*] Epoch: [117/300] time: 291.5065s, d_loss: 0.23571734 g_loss: 11.77697655
G and D models saved[*] Epoch: [117/300] time: 291.5065s, d_loss: 0.23571734 g_loss: 11.77697655
[*] Epoch: [118/300] time: 292.5330s, d_loss: 0.12951966 g_loss: 12.01227178
G and D models saved[*] Epoch: [118/300] time: 292.5330s, d_loss: 0.12951966 g_loss: 12.01227178
[*] Epoch: [119/300] time: 290.1669s, d_loss: 0.17355841 g_loss: 12.05735224
G and D models saved[*] Epoch: [119/300] time: 290.1669s, d_loss: 0.17355841 g_loss: 12.05735224
[*] Epoch: [120/300] time: 290.5697s, d_loss: 0.35602407 g_loss: 11.78311454
G and D models saved[*] Epoch: [120/300] time: 290.5697s, d_loss: 0.35602407 g_loss: 11.78311454
[*] Epoch: [121/300] time: 291.8555s, d_loss: 0.26348839 g_loss: 11.83598956
G and D models saved[*] Epoch: [121/300] time: 291.8555s, d_loss: 0.26348839 g_loss: 11.83598956
[*] Epoch: [122/300] time: 289.6311s, d_loss: 0.49216784 g_loss: 11.93633291
G and D models saved[*] Epoch: [122/300] time: 289.6311s, d_loss: 0.49216784 g_loss: 11.93633291
[*] Epoch: [123/300] time: 289.4879s, d_loss: 0.64899461 g_loss: 12.21658071
G and D models saved[*] Epoch: [123/300] time: 289.4879s, d_loss: 0.64899461 g_loss: 12.21658071
[*] Epoch: [124/300] time: 291.0735s, d_loss: 0.54718433 g_loss: 11.86116056
G and D models saved[*] Epoch: [124/300] time: 291.0735s, d_loss: 0.54718433 g_loss: 11.86116056
[*] Epoch: [125/300] time: 289.7750s, d_loss: 0.49777406 g_loss: 11.90565583
G and D models saved[*] Epoch: [125/300] time: 289.7750s, d_loss: 0.49777406 g_loss: 11.90565583
[*] Epoch: [126/300] time: 290.3713s, d_loss: 0.06615047 g_loss: 11.85612286
G and D models saved[*] Epoch: [126/300] time: 290.3713s, d_loss: 0.06615047 g_loss: 11.85612286
[*] Epoch: [127/300] time: 290.2598s, d_loss: 0.13322672 g_loss: 12.03076557
G and D models saved[*] Epoch: [127/300] time: 290.2598s, d_loss: 0.13322672 g_loss: 12.03076557
[*] Epoch: [128/300] time: 291.9929s, d_loss: 0.21478924 g_loss: 11.97133559
G and D models saved[*] Epoch: [128/300] time: 291.9929s, d_loss: 0.21478924 g_loss: 11.97133559
[*] Epoch: [129/300] time: 289.3721s, d_loss: 0.03259677 g_loss: 11.84049218
G and D models saved[*] Epoch: [129/300] time: 289.3721s, d_loss: 0.03259677 g_loss: 11.84049218
[*] Epoch: [130/300] time: 288.6693s, d_loss: 0.02075453 g_loss: 11.82743669
G and D models saved[*] Epoch: [130/300] time: 288.6693s, d_loss: 0.02075453 g_loss: 11.82743669
[*] Epoch: [131/300] time: 289.0260s, d_loss: 0.02905283 g_loss: 11.64515668
G and D models saved[*] Epoch: [131/300] time: 289.0260s, d_loss: 0.02905283 g_loss: 11.64515668
[*] Epoch: [132/300] time: 292.2041s, d_loss: 0.01779491 g_loss: 11.82833823
G and D models saved[*] Epoch: [132/300] time: 292.2041s, d_loss: 0.01779491 g_loss: 11.82833823
[*] Epoch: [133/300] time: 289.7026s, d_loss: 0.03286860 g_loss: 11.71439478
G and D models saved[*] Epoch: [133/300] time: 289.7026s, d_loss: 0.03286860 g_loss: 11.71439478
[*] Epoch: [134/300] time: 290.3020s, d_loss: 0.01987901 g_loss: 11.75900480
G and D models saved[*] Epoch: [134/300] time: 290.3020s, d_loss: 0.01987901 g_loss: 11.75900480
[*] Epoch: [135/300] time: 290.2929s, d_loss: 0.02144877 g_loss: 11.45560166
G and D models saved[*] Epoch: [135/300] time: 290.2929s, d_loss: 0.02144877 g_loss: 11.45560166
[*] Epoch: [136/300] time: 288.9422s, d_loss: 0.01743143 g_loss: 11.90624548
G and D models saved[*] Epoch: [136/300] time: 288.9422s, d_loss: 0.01743143 g_loss: 11.90624548
[*] Epoch: [137/300] time: 287.6979s, d_loss: 0.31130829 g_loss: 11.60782316
G and D models saved[*] Epoch: [137/300] time: 287.6979s, d_loss: 0.31130829 g_loss: 11.60782316
[*] Epoch: [138/300] time: 289.0116s, d_loss: 0.11348931 g_loss: 11.89801001
G and D models saved[*] Epoch: [138/300] time: 289.0116s, d_loss: 0.11348931 g_loss: 11.89801001
[*] Epoch: [139/300] time: 291.0330s, d_loss: 0.10978892 g_loss: 11.78147298
G and D models saved[*] Epoch: [139/300] time: 291.0330s, d_loss: 0.10978892 g_loss: 11.78147298
[*] Epoch: [140/300] time: 292.1550s, d_loss: 0.16802759 g_loss: 11.94685175
G and D models saved[*] Epoch: [140/300] time: 292.1550s, d_loss: 0.16802759 g_loss: 11.94685175
[*] Epoch: [141/300] time: 294.8606s, d_loss: 0.25922520 g_loss: 11.75829340
G and D models saved[*] Epoch: [141/300] time: 294.8606s, d_loss: 0.25922520 g_loss: 11.75829340
[*] Epoch: [142/300] time: 295.6057s, d_loss: 0.06275306 g_loss: 11.86440277
G and D models saved[*] Epoch: [142/300] time: 295.6057s, d_loss: 0.06275306 g_loss: 11.86440277
[*] Epoch: [143/300] time: 295.7601s, d_loss: 0.09311099 g_loss: 11.80515639
G and D models saved[*] Epoch: [143/300] time: 295.7601s, d_loss: 0.09311099 g_loss: 11.80515639
[*] Epoch: [144/300] time: 295.2905s, d_loss: 0.08561163 g_loss: 11.83863269
G and D models saved[*] Epoch: [144/300] time: 295.2905s, d_loss: 0.08561163 g_loss: 11.83863269
[*] Epoch: [145/300] time: 295.4577s, d_loss: 0.42077083 g_loss: 11.67427854
G and D models saved[*] Epoch: [145/300] time: 295.4577s, d_loss: 0.42077083 g_loss: 11.67427854
[*] Epoch: [146/300] time: 299.0454s, d_loss: 0.23510558 g_loss: 11.58677684
G and D models saved[*] Epoch: [146/300] time: 299.0454s, d_loss: 0.23510558 g_loss: 11.58677684
[*] Epoch: [147/300] time: 295.3851s, d_loss: 0.08807871 g_loss: 11.38761787
G and D models saved[*] Epoch: [147/300] time: 295.3851s, d_loss: 0.08807871 g_loss: 11.38761787
[*] Epoch: [148/300] time: 295.1836s, d_loss: 0.04263492 g_loss: 11.56362721
G and D models saved[*] Epoch: [148/300] time: 295.1836s, d_loss: 0.04263492 g_loss: 11.56362721
[*] Epoch: [149/300] time: 297.5916s, d_loss: 0.01781912 g_loss: 11.52990027
G and D models saved ** new learning rate: 0.000010 (for GAN)
[*] Epoch: [150/300] time: 296.0739s, d_loss: 0.01217311 g_loss: 11.58745808
G and D models saved[*] Epoch: [150/300] time: 296.0739s, d_loss: 0.01217311 g_loss: 11.58745808
[*] Epoch: [151/300] time: 296.1258s, d_loss: 0.02346718 g_loss: 11.16417069
G and D models saved[*] Epoch: [151/300] time: 296.1258s, d_loss: 0.02346718 g_loss: 11.16417069
[*] Epoch: [152/300] time: 295.5120s, d_loss: 0.05477177 g_loss: 11.06344993
G and D models saved[*] Epoch: [152/300] time: 295.5120s, d_loss: 0.05477177 g_loss: 11.06344993
[*] Epoch: [153/300] time: 299.5510s, d_loss: 0.15403702 g_loss: 11.06980741
G and D models saved[*] Epoch: [153/300] time: 299.5510s, d_loss: 0.15403702 g_loss: 11.06980741
[*] Epoch: [154/300] time: 299.3686s, d_loss: 0.01238552 g_loss: 11.16494334
G and D models saved[*] Epoch: [154/300] time: 299.3686s, d_loss: 0.01238552 g_loss: 11.16494334
[*] Epoch: [155/300] time: 298.4262s, d_loss: 0.01573471 g_loss: 11.26412072
G and D models saved[*] Epoch: [155/300] time: 298.4262s, d_loss: 0.01573471 g_loss: 11.26412072
[*] Epoch: [156/300] time: 299.6100s, d_loss: 0.01550540 g_loss: 11.09903745
G and D models saved[*] Epoch: [156/300] time: 299.6100s, d_loss: 0.01550540 g_loss: 11.09903745
[*] Epoch: [157/300] time: 299.2887s, d_loss: 0.02348808 g_loss: 10.85613159
G and D models saved[*] Epoch: [157/300] time: 299.2887s, d_loss: 0.02348808 g_loss: 10.85613159
[*] Epoch: [158/300] time: 298.8673s, d_loss: 0.01270707 g_loss: 11.06263337
G and D models saved[*] Epoch: [158/300] time: 298.8673s, d_loss: 0.01270707 g_loss: 11.06263337
[*] Epoch: [159/300] time: 297.7423s, d_loss: 0.01443567 g_loss: 11.05772174
G and D models saved[*] Epoch: [159/300] time: 297.7423s, d_loss: 0.01443567 g_loss: 11.05772174
[*] Epoch: [160/300] time: 300.6662s, d_loss: 0.01220827 g_loss: 10.97691094
G and D models saved[*] Epoch: [160/300] time: 300.6662s, d_loss: 0.01220827 g_loss: 10.97691094
[*] Epoch: [161/300] time: 299.3007s, d_loss: 0.01052982 g_loss: 10.84471577
G and D models saved[*] Epoch: [161/300] time: 299.3007s, d_loss: 0.01052982 g_loss: 10.84471577
[*] Epoch: [162/300] time: 299.0387s, d_loss: 0.02110407 g_loss: 10.95049897
G and D models saved[*] Epoch: [162/300] time: 299.0387s, d_loss: 0.02110407 g_loss: 10.95049897
[*] Epoch: [163/300] time: 298.2259s, d_loss: 0.03308547 g_loss: 11.17772819
G and D models saved[*] Epoch: [163/300] time: 298.2259s, d_loss: 0.03308547 g_loss: 11.17772819
[*] Epoch: [164/300] time: 300.0196s, d_loss: 0.01166041 g_loss: 10.95310458
G and D models saved[*] Epoch: [164/300] time: 300.0196s, d_loss: 0.01166041 g_loss: 10.95310458
[*] Epoch: [165/300] time: 300.1273s, d_loss: 0.01303855 g_loss: 10.79745971
G and D models saved[*] Epoch: [165/300] time: 300.1273s, d_loss: 0.01303855 g_loss: 10.79745971
[*] Epoch: [166/300] time: 300.6751s, d_loss: 0.01055782 g_loss: 11.07572132
G and D models saved[*] Epoch: [166/300] time: 300.6751s, d_loss: 0.01055782 g_loss: 11.07572132
[*] Epoch: [167/300] time: 298.4536s, d_loss: 0.01502048 g_loss: 10.97383697
G and D models saved[*] Epoch: [167/300] time: 298.4536s, d_loss: 0.01502048 g_loss: 10.97383697
[*] Epoch: [168/300] time: 298.9907s, d_loss: 0.00825782 g_loss: 10.91039919
G and D models saved[*] Epoch: [168/300] time: 298.9907s, d_loss: 0.00825782 g_loss: 10.91039919
[*] Epoch: [169/300] time: 297.0384s, d_loss: 0.01322386 g_loss: 11.13973480
G and D models saved[*] Epoch: [169/300] time: 297.0384s, d_loss: 0.01322386 g_loss: 11.13973480
[*] Epoch: [170/300] time: 299.5467s, d_loss: 0.01061063 g_loss: 11.01526870
G and D models saved[*] Epoch: [170/300] time: 299.5467s, d_loss: 0.01061063 g_loss: 11.01526870
[*] Epoch: [171/300] time: 296.7587s, d_loss: 0.01405690 g_loss: 10.92080067
G and D models saved[*] Epoch: [171/300] time: 296.7587s, d_loss: 0.01405690 g_loss: 10.92080067
[*] Epoch: [172/300] time: 300.4166s, d_loss: 0.01245670 g_loss: 11.14116669
G and D models saved[*] Epoch: [172/300] time: 300.4166s, d_loss: 0.01245670 g_loss: 11.14116669
[*] Epoch: [173/300] time: 300.1306s, d_loss: 0.01498921 g_loss: 10.89147826
G and D models saved[*] Epoch: [173/300] time: 300.1306s, d_loss: 0.01498921 g_loss: 10.89147826
[*] Epoch: [174/300] time: 299.2569s, d_loss: 0.01161172 g_loss: 10.96286804
G and D models saved[*] Epoch: [174/300] time: 299.2569s, d_loss: 0.01161172 g_loss: 10.96286804
[*] Epoch: [175/300] time: 298.9564s, d_loss: 0.00870155 g_loss: 11.05188077
G and D models saved[*] Epoch: [175/300] time: 298.9564s, d_loss: 0.00870155 g_loss: 11.05188077
[*] Epoch: [176/300] time: 299.4355s, d_loss: 0.02426370 g_loss: 11.05478002
G and D models saved[*] Epoch: [176/300] time: 299.4355s, d_loss: 0.02426370 g_loss: 11.05478002
[*] Epoch: [177/300] time: 296.2713s, d_loss: 0.01191940 g_loss: 11.04777606
G and D models saved[*] Epoch: [177/300] time: 296.2713s, d_loss: 0.01191940 g_loss: 11.04777606
[*] Epoch: [178/300] time: 298.7391s, d_loss: 0.00865057 g_loss: 11.00992731
G and D models saved[*] Epoch: [178/300] time: 298.7391s, d_loss: 0.00865057 g_loss: 11.00992731
[*] Epoch: [179/300] time: 297.9874s, d_loss: 0.02963804 g_loss: 11.10053794
G and D models saved[*] Epoch: [179/300] time: 297.9874s, d_loss: 0.02963804 g_loss: 11.10053794
[*] Epoch: [180/300] time: 298.4302s, d_loss: 0.01244171 g_loss: 11.13863715
G and D models saved[*] Epoch: [180/300] time: 298.4302s, d_loss: 0.01244171 g_loss: 11.13863715
[*] Epoch: [181/300] time: 297.8947s, d_loss: 0.00893625 g_loss: 11.21786746
G and D models saved[*] Epoch: [181/300] time: 297.8947s, d_loss: 0.00893625 g_loss: 11.21786746
[*] Epoch: [182/300] time: 299.7686s, d_loss: 0.06262451 g_loss: 11.08748565
G and D models saved[*] Epoch: [182/300] time: 299.7686s, d_loss: 0.06262451 g_loss: 11.08748565
[*] Epoch: [183/300] time: 299.1570s, d_loss: 0.01055346 g_loss: 10.87322392
G and D models saved[*] Epoch: [183/300] time: 299.1570s, d_loss: 0.01055346 g_loss: 10.87322392
[*] Epoch: [184/300] time: 298.3033s, d_loss: 0.01037202 g_loss: 10.68310935
G and D models saved[*] Epoch: [184/300] time: 298.3033s, d_loss: 0.01037202 g_loss: 10.68310935
[*] Epoch: [185/300] time: 298.5544s, d_loss: 0.01812830 g_loss: 10.94956393
G and D models saved[*] Epoch: [185/300] time: 298.5544s, d_loss: 0.01812830 g_loss: 10.94956393
[*] Epoch: [186/300] time: 297.1594s, d_loss: 0.01035771 g_loss: 10.92083108
G and D models saved[*] Epoch: [186/300] time: 297.1594s, d_loss: 0.01035771 g_loss: 10.92083108
[*] Epoch: [187/300] time: 299.6754s, d_loss: 0.00965202 g_loss: 10.96540991
G and D models saved[*] Epoch: [187/300] time: 299.6754s, d_loss: 0.00965202 g_loss: 10.96540991
[*] Epoch: [188/300] time: 298.8838s, d_loss: 0.09756713 g_loss: 10.76588240
G and D models saved[*] Epoch: [188/300] time: 298.8838s, d_loss: 0.09756713 g_loss: 10.76588240
[*] Epoch: [189/300] time: 298.2769s, d_loss: 0.04321408 g_loss: 10.92897147
G and D models saved[*] Epoch: [189/300] time: 298.2769s, d_loss: 0.04321408 g_loss: 10.92897147
[*] Epoch: [190/300] time: 300.7012s, d_loss: 0.03861321 g_loss: 10.79458028
G and D models saved[*] Epoch: [190/300] time: 300.7012s, d_loss: 0.03861321 g_loss: 10.79458028
[*] Epoch: [191/300] time: 294.8457s, d_loss: 0.01498631 g_loss: 11.12496206
G and D models saved[*] Epoch: [191/300] time: 294.8457s, d_loss: 0.01498631 g_loss: 11.12496206
[*] Epoch: [192/300] time: 294.3385s, d_loss: 0.02788723 g_loss: 10.85175532
G and D models saved[*] Epoch: [192/300] time: 294.3385s, d_loss: 0.02788723 g_loss: 10.85175532
[*] Epoch: [193/300] time: 295.9540s, d_loss: 0.01012273 g_loss: 10.77091920
G and D models saved[*] Epoch: [193/300] time: 295.9540s, d_loss: 0.01012273 g_loss: 10.77091920
[*] Epoch: [194/300] time: 297.3936s, d_loss: 0.01021379 g_loss: 10.91670667
G and D models saved[*] Epoch: [194/300] time: 297.3936s, d_loss: 0.01021379 g_loss: 10.91670667
[*] Epoch: [195/300] time: 296.9149s, d_loss: 0.02322562 g_loss: 10.72393578
G and D models saved[*] Epoch: [195/300] time: 296.9149s, d_loss: 0.02322562 g_loss: 10.72393578
[*] Epoch: [196/300] time: 294.7899s, d_loss: 0.01208444 g_loss: 10.81575496
G and D models saved[*] Epoch: [196/300] time: 294.7899s, d_loss: 0.01208444 g_loss: 10.81575496
[*] Epoch: [197/300] time: 295.0602s, d_loss: 0.02404995 g_loss: 10.71728512
G and D models saved[*] Epoch: [197/300] time: 295.0602s, d_loss: 0.02404995 g_loss: 10.71728512
[*] Epoch: [198/300] time: 295.6959s, d_loss: 0.02082195 g_loss: 10.80588344
G and D models saved[*] Epoch: [198/300] time: 295.6959s, d_loss: 0.02082195 g_loss: 10.80588344
[*] Epoch: [199/300] time: 298.1163s, d_loss: 0.01446194 g_loss: 10.95852739
G and D models saved[*] Epoch: [199/300] time: 298.1163s, d_loss: 0.01446194 g_loss: 10.95852739
[*] Epoch: [200/300] time: 294.8470s, d_loss: 0.00876558 g_loss: 10.89377783
G and D models saved[*] Epoch: [200/300] time: 294.8470s, d_loss: 0.00876558 g_loss: 10.89377783
[*] Epoch: [201/300] time: 293.1137s, d_loss: 0.01255839 g_loss: 11.13190829
G and D models saved[*] Epoch: [201/300] time: 293.1137s, d_loss: 0.01255839 g_loss: 11.13190829
[*] Epoch: [202/300] time: 294.8037s, d_loss: 0.00755660 g_loss: 10.70742565
G and D models saved[*] Epoch: [202/300] time: 294.8037s, d_loss: 0.00755660 g_loss: 10.70742565
[*] Epoch: [203/300] time: 295.5768s, d_loss: 0.01004130 g_loss: 10.92512934
G and D models saved[*] Epoch: [203/300] time: 295.5768s, d_loss: 0.01004130 g_loss: 10.92512934
[*] Epoch: [204/300] time: 301.7225s, d_loss: 0.00818827 g_loss: 10.82118109
G and D models saved[*] Epoch: [204/300] time: 301.7225s, d_loss: 0.00818827 g_loss: 10.82118109
[*] Epoch: [205/300] time: 300.2351s, d_loss: 0.01521394 g_loss: 10.62094895
G and D models saved[*] Epoch: [205/300] time: 300.2351s, d_loss: 0.01521394 g_loss: 10.62094895
[*] Epoch: [206/300] time: 299.5842s, d_loss: 0.00861773 g_loss: 10.85313290
G and D models saved[*] Epoch: [206/300] time: 299.5842s, d_loss: 0.00861773 g_loss: 10.85313290
[*] Epoch: [207/300] time: 298.7093s, d_loss: 0.03503901 g_loss: 11.06691763
G and D models saved[*] Epoch: [207/300] time: 298.7093s, d_loss: 0.03503901 g_loss: 11.06691763
[*] Epoch: [208/300] time: 296.8231s, d_loss: 0.00891834 g_loss: 10.82883877
G and D models saved[*] Epoch: [208/300] time: 296.8231s, d_loss: 0.00891834 g_loss: 10.82883877
[*] Epoch: [209/300] time: 298.6077s, d_loss: 0.00724914 g_loss: 10.87589815
G and D models saved[*] Epoch: [209/300] time: 298.6077s, d_loss: 0.00724914 g_loss: 10.87589815
[*] Epoch: [210/300] time: 291.2820s, d_loss: 0.00913432 g_loss: 10.90540822
G and D models saved[*] Epoch: [210/300] time: 291.2820s, d_loss: 0.00913432 g_loss: 10.90540822
[*] Epoch: [211/300] time: 292.9749s, d_loss: 0.04619446 g_loss: 10.72156728
G and D models saved[*] Epoch: [211/300] time: 292.9749s, d_loss: 0.04619446 g_loss: 10.72156728
[*] Epoch: [212/300] time: 292.9600s, d_loss: 0.00827360 g_loss: 10.84544351
G and D models saved[*] Epoch: [212/300] time: 292.9600s, d_loss: 0.00827360 g_loss: 10.84544351
[*] Epoch: [213/300] time: 297.5152s, d_loss: 0.01474584 g_loss: 10.78345122
G and D models saved[*] Epoch: [213/300] time: 297.5152s, d_loss: 0.01474584 g_loss: 10.78345122
[*] Epoch: [214/300] time: 303.2952s, d_loss: 0.01635200 g_loss: 10.64652701
G and D models saved[*] Epoch: [214/300] time: 303.2952s, d_loss: 0.01635200 g_loss: 10.64652701
[*] Epoch: [215/300] time: 309.9113s, d_loss: 0.00667762 g_loss: 10.73736134
G and D models saved[*] Epoch: [215/300] time: 309.9113s, d_loss: 0.00667762 g_loss: 10.73736134
[*] Epoch: [216/300] time: 308.7744s, d_loss: 0.00878738 g_loss: 10.61388196
G and D models saved[*] Epoch: [216/300] time: 308.7744s, d_loss: 0.00878738 g_loss: 10.61388196
[*] Epoch: [217/300] time: 307.7876s, d_loss: 0.01043778 g_loss: 10.94962254
G and D models saved[*] Epoch: [217/300] time: 307.7876s, d_loss: 0.01043778 g_loss: 10.94962254
[*] Epoch: [218/300] time: 307.6783s, d_loss: 0.00731335 g_loss: 10.78426481
G and D models saved[*] Epoch: [218/300] time: 307.6783s, d_loss: 0.00731335 g_loss: 10.78426481
[*] Epoch: [219/300] time: 309.9295s, d_loss: 0.01726151 g_loss: 10.89795461
G and D models saved[*] Epoch: [219/300] time: 309.9295s, d_loss: 0.01726151 g_loss: 10.89795461
[*] Epoch: [220/300] time: 308.2686s, d_loss: 0.00808103 g_loss: 10.76209059
G and D models saved[*] Epoch: [220/300] time: 308.2686s, d_loss: 0.00808103 g_loss: 10.76209059
[*] Epoch: [221/300] time: 307.8962s, d_loss: 0.00748024 g_loss: 10.76575837
G and D models saved[*] Epoch: [221/300] time: 307.8962s, d_loss: 0.00748024 g_loss: 10.76575837
[*] Epoch: [222/300] time: 301.0087s, d_loss: 0.00945075 g_loss: 10.71965880
G and D models saved[*] Epoch: [222/300] time: 301.0087s, d_loss: 0.00945075 g_loss: 10.71965880
[*] Epoch: [223/300] time: 299.6233s, d_loss: 0.00874559 g_loss: 10.66988638
G and D models saved[*] Epoch: [223/300] time: 299.6233s, d_loss: 0.00874559 g_loss: 10.66988638
[*] Epoch: [224/300] time: 308.9195s, d_loss: 0.01165116 g_loss: 10.77570822
G and D models saved[*] Epoch: [224/300] time: 308.9195s, d_loss: 0.01165116 g_loss: 10.77570822
[*] Epoch: [225/300] time: 302.6766s, d_loss: 0.00918007 g_loss: 10.92369233
G and D models saved[*] Epoch: [225/300] time: 302.6766s, d_loss: 0.00918007 g_loss: 10.92369233
[*] Epoch: [226/300] time: 301.2713s, d_loss: 0.00672113 g_loss: 10.59883506
G and D models saved[*] Epoch: [226/300] time: 301.2713s, d_loss: 0.00672113 g_loss: 10.59883506
[*] Epoch: [227/300] time: 301.5828s, d_loss: 0.00787228 g_loss: 10.99466644
G and D models saved[*] Epoch: [227/300] time: 301.5828s, d_loss: 0.00787228 g_loss: 10.99466644
[*] Epoch: [228/300] time: 301.6594s, d_loss: 0.00669038 g_loss: 10.92690756
G and D models saved[*] Epoch: [228/300] time: 301.6594s, d_loss: 0.00669038 g_loss: 10.92690756
[*] Epoch: [229/300] time: 302.3791s, d_loss: 0.00660309 g_loss: 10.98675149
G and D models saved[*] Epoch: [229/300] time: 302.3791s, d_loss: 0.00660309 g_loss: 10.98675149
[*] Epoch: [230/300] time: 303.1187s, d_loss: 0.00680509 g_loss: 10.98471212
G and D models saved[*] Epoch: [230/300] time: 303.1187s, d_loss: 0.00680509 g_loss: 10.98471212
[*] Epoch: [231/300] time: 295.7011s, d_loss: 0.00609138 g_loss: 10.90377767
G and D models saved[*] Epoch: [231/300] time: 295.7011s, d_loss: 0.00609138 g_loss: 10.90377767
[*] Epoch: [232/300] time: 294.6799s, d_loss: 0.00673673 g_loss: 10.64784469
G and D models saved[*] Epoch: [232/300] time: 294.6799s, d_loss: 0.00673673 g_loss: 10.64784469
[*] Epoch: [233/300] time: 293.5191s, d_loss: 0.01813948 g_loss: 10.97807263
G and D models saved[*] Epoch: [233/300] time: 293.5191s, d_loss: 0.01813948 g_loss: 10.97807263
[*] Epoch: [234/300] time: 292.8694s, d_loss: 0.01694230 g_loss: 10.65323452