-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRecommenderNet.py
35 lines (32 loc) · 1.36 KB
/
RecommenderNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
class RecommenderNet(keras.Model):
"""Objet de type réseau-neuronal, utilisé en class de type « Model »."""
def __init__(self, num_users, num_books, embedding_size, **kwargs):
super(RecommenderNet, self).__init__(**kwargs)
self.num_users = num_users
self.num_books = num_books
self.embedding_size = embedding_size
self.user_embedding = layers.Embedding(
num_users,
embedding_size,
embeddings_initializer="he_normal",
embeddings_regularizer=keras.regularizers.l2(1e-6),
)
self.user_bias = layers.Embedding(num_users, 1)
self.book_embedding = layers.Embedding(
num_books,
embedding_size,
embeddings_initializer="he_normal",
embeddings_regularizer=keras.regularizers.l2(1e-6),
)
self.book_bias = layers.Embedding(num_books, 1)
def call(self, inputs):
user_vector = self.user_embedding(inputs[:, 0])
user_bias = self.user_bias(inputs[:, 0])
book_vector = self.book_embedding(inputs[:, 1])
book_bias = self.book_bias(inputs[:, 1])
dot_user_book = tf.tensordot(user_vector, book_vector, 2)
x = dot_user_book + user_bias + book_bias
return tf.nn.sigmoid(x)