PYTHONPATH=. python keras_centernet/bin/hpdet_image.py --fn assets/hp_demo.jpg --inres 512,512
mkdir -p output && youtube-dl -f 137 https://www.youtube.com/watch?v=2DiQUX11YaY --output output/sydney.mp4
PYTHONPATH=. python keras_centernet/bin/hpdet_video.py --inres 512,512 --video output/sydney.mp4
You should get the following output:
wget images.cocodataset.org/zips/val2017.zip
unzip val2017.zip && rm val2017.zip
wget images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip annotations_trainval2017.zip && rm annotations_trainval2017.zip
- Fixed resolution 512,512: 780s -> 156ms/image
PYTHONPATH=. python keras_centernet/bin/hpdet_coco.py --data val2017 --annotations annotations --inres 512,512 --no-full-resolution
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.590
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.825
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.637
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.521
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.709
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.662
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.872
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.709
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.573
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.788
- Full resolution,
mode='testing'
: 914s -> 183ms/image
PYTHONPATH=. python keras_centernet/bin/hpdet_coco.py --data val2017 --annotations annotations
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.618
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.842
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.678
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.573
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.701
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.695
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.890
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.753
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.627
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.791
- Pytorch (official repository), same as
--keep_res
: 453s -> 91ms/image
Evaluate annotation type *keypoints*
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.619
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.842
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.681
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.575
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.701
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.696
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.890
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.755
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.628
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.791
- Pytorch (official repository), same as
--keep_res --flip_test
: 827s -> 165ms/image
Evaluate annotation type *keypoints*
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.640
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.856
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.702
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.594
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.721
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.709
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.901
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.767
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.644
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.802