-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathERAT_main.py
436 lines (355 loc) · 18.4 KB
/
ERAT_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import os
import random
import argparse
import numpy as np
from models import *
from torch.autograd import Variable
import utils.dataloader_cifar as dataloader
import torchvision.transforms as transforms
import scipy.io as sio
from utils.autoaugment import CIFAR10Policy, ImageNetPolicy
from utils.step import LinfStep, L2Step
parser = argparse.ArgumentParser(description='Effective and Robust Adversarial Training')
parser.add_argument('--batch_size', default=64, type=int, help='train batchsize')
parser.add_argument('--lr', '--learning_rate', default=0.02, type=float, help='initial learning rate 0.02')
parser.add_argument('--noise_mode', default='instance', help='lable noise type', choices=[pairflip, symmetric,instance])
parser.add_argument('--poison_type', default='L2C', help='data poisoning type', choices=[C, L2C, P1, P2, P3, P4, P5])
parser.add_argument('--noise_rate', type=float, help='label noise rate', default=0.6)
parser.add_argument('--eps_a', type=float, default=0.032, help='attack budget for data poisoning')
parser.add_argument('--eps_d', type=float, default=0.032, help='defense defense for data poisoning')
parser.add_argument('--model', type=str, help='cnn,resnet', default='resnet34')
parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature')
parser.add_argument('--num_epochs', default=100, type=int)
parser.add_argument('--id', default='')
parser.add_argument('--seed', default=123)
parser.add_argument('--gpuid', default=0, type=int)
parser.add_argument('--num_class', default=10, type=int, help='10, or 100')
parser.add_argument('--data_path', default='./Datasets/cifar-10-python.tar/cifar-10-python/cifar-10-batches-py',
type=str, help='path to dataset')
parser.add_argument('--dataset', type=str, help='cifar10, or cifar100', default='cifar10')
parser.add_argument('--result_dir', type=str, help='dir to save result txt files', default='./Dual/w8/Par7')
parser.add_argument('--eta', type=float, default=0.1, help='Balancing class number')
parser.add_argument('--constraint_a', default='Linf', choices=['Linf', 'L2'], help='data poisoning constraint for attack', type=str)
parser.add_argument('--constraint_d', default='L2', choices=['Linf', 'L2'], help='data poisoning constraint for defense', type=str)
parser.add_argument('--poison_data_path', default='./CIFAR10Poison', type=str)
args = parser.parse_args()
#settings for imargary data poisoning
args.step_size = args.eps_a / 5
args.num_steps = 7
args.random_restarts = 1
torch.cuda.set_device(args.gpuid)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
STEPS = {
'Linf': LinfStep,
'L2': L2Step,
}
def batch_adv_attack(args, net, x, x1, labels):
orig_x = x.clone().detach()
step = STEPS[args.constraint_d](orig_x, args.eps_d, args.step_size)
def get_adv_examples(x):
for _ in range(args.num_steps):
x = x.clone().detach().requires_grad_(True)
logits = net(x)
logits1 = net(x1)
loss = - nn.CrossEntropyLoss()(logits1, labels) - torch.mean((torch.softmax(logits, dim=1) - torch.softmax(logits1.detach(), dim=1)) ** 2)
grad = torch.autograd.grad(loss, [x])[0]
with torch.no_grad():
x = step.step(x, grad)
x = step.project(x)
x = torch.clamp(x, 0, 1)
return x.clone().detach()
to_ret = None
if args.random_restarts == 0:
adv = get_adv_examples(x)
to_ret = adv.detach()
elif args.random_restarts == 1:
x = step.random_perturb(x)
x = torch.clamp(x, 0, 1)
adv = get_adv_examples(x)
to_ret = adv.detach()
else:
for _ in range(args.random_restarts):
x = step.random_perturb(x)
x = torch.clamp(x, 0, 1)
adv = get_adv_examples(x)
if to_ret is None:
to_ret = adv.detach()
logits = net(adv)
corr, = accuracy(logits, target, topk=(1,), exact=True)
corr = corr.bool()
misclass = ~corr
to_ret[misclass] = adv[misclass]
return to_ret.detach().requires_grad_(False)
transform_strong_10 = transforms.Compose(
[
transforms.ToPILImage(),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
CIFAR10Policy(),
transforms.ToTensor(),
]
)
def strong_data_augment(image):
image = image.cpu()
for i in range(len(image)):
image[i] = transform_strong_10(image[i])
return image
# Training
def train(epoch, net, optimizer, labeled_trainloader, unlabeled_trainloader):
unlabeled_train_iter = iter(unlabeled_trainloader)
num_iter = (len(labeled_trainloader.dataset) // args.batch_size) + 1
i = 0
for batch_idx, (inputs_x, inputs_x2, inputs_x3, inputs_x4, labels_x) in enumerate(labeled_trainloader):
i = i +1
try:
inputs_u, inputs_u2, inputs_u3, inputs_u4, labels_u = next(unlabeled_train_iter)
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
inputs_u, inputs_u2, inputs_u3, inputs_u4, labels_u = next(unlabeled_train_iter)
batch_size = inputs_x.size(0)
labels_x = labels_x.cuda()
inputs_x, inputs_x2, inputs_x3, inputs_x4, labels_x = inputs_x.cuda(), inputs_x2.cuda(), inputs_x3.cuda(),\
inputs_x4.cuda(), labels_x.cuda()
inputs_u, inputs_u2, inputs_u3, inputs_u4, labels_u = inputs_u.cuda(), inputs_u2.cuda(), inputs_u3.cuda(), inputs_u4.cuda(), labels_u.cuda()
# adversarial training ----------------------------------------------------------------
net.eval() #uniformly poisoning data
leng = int(batch_size/2)
args.constraint_d = 'Linf'
args.eps_d = 0.032
inp_adv_x1 = batch_adv_attack(args, net, inputs_x[:leng], inputs_x2[:leng], labels_x[:leng])
inp_adv_u1 = batch_adv_attack(args, net, inputs_u[:leng], inputs_u2[:leng], labels_u[:leng])
args.constraint_d = 'L2'
args.eps_d = 0.5
inp_adv_x2 = batch_adv_attack(args, net, inputs_x[leng:], inputs_x2[leng:], labels_x[:leng])
inp_adv_u2 = batch_adv_attack(args, net, inputs_u[leng:], inputs_u2[leng:], labels_u[:leng])
net.train()
inp_adv_x = torch.cat([inp_adv_x1, inp_adv_x2], dim=0)
inp_adv_u = torch.cat([inp_adv_u1, inp_adv_u2], dim=0)
with torch.no_grad():
# label guessing of unlabeled samples
logits_u = net(inputs_u)
pu = torch.softmax(logits_u, dim=1)
ptu = pu ** (1 / args.T) # temparature sharpening
targets_u = ptu / ptu.sum(dim=1, keepdim=True) # normalize
targets_u = targets_u.detach()
with torch.no_grad():
inputs_x5 = strong_data_augment(inp_adv_x)
inputs_u5 = strong_data_augment(inp_adv_u)
inputs_x5, inputs_u5 = inputs_x5.cuda(), inputs_u5.cuda()
# semi-supervised learning
all_inputs = torch.cat([inputs_x3, inputs_x4, inputs_u3, inputs_u4], dim=0)
all_inputs_adv = torch.cat([inp_adv_x, inputs_x5, inp_adv_u, inputs_u5], dim=0)
all_targets = torch.cat([labels_x, labels_x, targets_u, targets_u], dim=0)
all_inputs = Variable(all_inputs.data, requires_grad=True)
logit = net(all_inputs)
logit_adv = net(all_inputs_adv)
Lx_s1, Lu_s1, lamb_s1 = criterion(logit[:batch_size * 2], all_targets[:batch_size * 2], logit[batch_size * 2:], all_targets[batch_size * 2:],
epoch + batch_idx / num_iter, warm_up)
Lx_s2, Lu_s2, lamb_s2 = criterion(logit_adv[:batch_size * 2], all_targets[:batch_size * 2], logit_adv[batch_size * 2:], all_targets[batch_size * 2:],
epoch + batch_idx / num_iter, warm_up)
Lx_all = Lx_s1 + Lx_s2
Lu_all = lamb_s1 * Lu_s1 + lamb_s2 * Lu_s2
loss_all = Lx_all + Lu_all
optimizer.zero_grad()
loss_all.backward()
optimizer.step()
sys.stdout.write('\r')
sys.stdout.write('%s:%.1f-%s | Epoch [%3d/%3d] Iter[%3d/%3d]\t Labeled loss: %.2f Unlabeled loss: %.2f'
% (args.dataset, args.noise_rate, args.noise_mode, epoch, args.num_epochs, batch_idx + 1,
num_iter, Lx_all.item(), Lu_all.item()))
sys.stdout.flush()
def warmup(epoch, net, optimizer, dataloader):
num_iter = (len(dataloader.dataset) // dataloader.batch_size) + 1
for batch_idx, (inputs, inputs1, labels, _, path) in enumerate(dataloader):
inputs, inputs1, labels = inputs.cuda(), inputs1.cuda(), labels.cuda()
# adversarial training
batch_size = inputs.size(0)
leng = int(batch_size/2)
net.eval() #uniformly poisoning data
args.constraint_d = 'Linf'
args.eps_d = 0.032
inp_adv1 = batch_adv_attack(args, net, inputs[:leng], inputs1[:leng], labels[:leng])
args.constraint_d = 'L2'
args.eps_d = 0.5
inp_adv2 = batch_adv_attack(args, net, inputs[leng:], inputs1[leng:], labels[leng:])
net.train()
inp_adv = torch.cat([inp_adv1, inp_adv2], dim=0)
optimizer.zero_grad()
logits = net(inputs)
logits_adv = net(inp_adv)
loss = CEloss(logits, labels) + CEloss(logits_adv, labels)
loss.backward()
optimizer.step()
sys.stdout.write('\r')
sys.stdout.write('%s:%.1f-%s | Epoch [%3d/%3d] Iter[%3d/%3d]\t CE-loss: %.4f'
% (args.dataset, args.noise_rate, args.noise_mode, epoch, args.num_epochs, batch_idx + 1,
num_iter, loss.item()))
sys.stdout.flush()
def test(epoch, net, best_acc_=0, save=False):
net.eval()
correct = 0
correct_n = 0
total = 0
total_n = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
logits = net(inputs)
_, predicted = torch.max(logits, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
for batch_idx, (inputs_n, targets) in enumerate(testp_loader):
inputs_n, targets_n = inputs_n.cuda(), targets.cuda()
logits_n = net(inputs_n)
_, predicted_n = torch.max(logits_n, 1)
total_n += targets_n.size(0)
correct_n += predicted_n.eq(targets_n).cpu().sum().item()
acc = 100. * correct / total
acc_n = 100. * correct_n / total
if save:
if acc > best_acc_:
state = {'net_state_dict': net.state_dict(),
'epoch': epoch,
'acc': acc,
'acc_n': acc_n,
}
torch.save(state, os.path.join(save_dir, str(args.noise_rate) + '_' + str(args.eta) + '_' + 'best.pth.tar'))
best_acc_ = acc
if epoch == args.num_epochs - 1:
state = {'net_state_dict': net.state_dict(),
'epoch': epoch,
'acc': acc,
'acc_n': acc_n,
}
torch.save(state, os.path.join(save_dir, str(args.noise_rate) + '_' + str(args.eta) + '_' + 'last.pth.tar'))
return acc, acc_n, best_acc_
def eval_train(epoch, net, all_loss, all_loss_pred, class_p):
net.eval()
noise_label = torch.zeros(num_sample)
losses = torch.zeros(num_sample)
Ratios = np.zeros(args.num_class)
Ba_num = np.zeros(args.num_class)
Rate = np.zeros(args.num_class)
class_loss = np.zeros(args.num_class)
class_ind = {}
with torch.no_grad():
for batch_idx, (inputs, _, targets, _, index) in enumerate(eval_loader):
targetx = targets
inputs, targets = inputs.cuda(), targets.cuda()
batch_size = targets.size(0)
targets_s = torch.zeros(batch_size, args.num_class).scatter_(1, targetx.view(-1, 1), 1)
targets_s = targets_s.cuda()
inputs = inputs.cuda()
logits = net(inputs)
loss = torch.sum((torch.softmax(logits, dim=1) - targets_s) ** 2, dim=1)
for b in range(inputs.size(0)):
losses[index[b]] = loss[b]
noise_label[index[b]] = targets[b]
losses = (losses - losses.min()) / (losses.max() - losses.min())
all_loss.append(losses)
if args.noise_rate == 0.9: # average loss over last 5 epochs to improve convergence stability
history = torch.stack(all_loss)
input_loss = history[-5:].mean(0)
input_loss = input_loss.reshape(-1, 1)
else:
input_loss = losses.reshape(-1, 1)
threshold = torch.mean(losses) #threshold for initial dataset separation
prob_clean = (losses.data.numpy()<= threshold.item())
clean_len = np.sum(prob_clean).item()
for k in range(args.num_class):
class_ind[k] = [i for i, x in enumerate(noise_label) if x == k]
class_loss[k] = torch.mean(losses[class_ind[k]])
if epoch > warm_up:
class_loss[k] = torch.mean(losses[class_p[k]])
class_loss[k] = (1 - class_loss[k])**args.eta #Class_level divergence
loss_avg = np.sum(class_loss)
for k in range(args.num_class):
Ratios[k] = class_loss[k]/loss_avg # clean label assignment for each class
Ba_num[k] = Ratios[k] *clean_len
prob_ = np.argsort(losses[class_ind[k]].cpu().numpy())
class_p[k] = np.array(class_ind[k])[prob_[0:int(Ba_num[k])].astype(int)].squeeze()
return class_p, Ba_num, losses, all_loss
def linear_rampup(current, warm_up, rampup_length=16):
current = np.clip((current - warm_up) / rampup_length, 0.0, 1.0)
return args.lambda_u * float(current)
class SemiLoss(object):
def __call__(self, outputs_x, targets_x, outputs_u, targets_u, epoch, warm_up):
probs_u = torch.softmax(outputs_u, dim=1)
Lx = CEloss(outputs_x, targets_x)
Lu = torch.mean((probs_u - targets_u) ** 2)
return Lx, Lu, linear_rampup(epoch, warm_up)
save_dir = args.result_dir + '/' + args.dataset + '/' + args.model + '/' + args.noise_mode + '/' + args.poison_type + '/' + str(args.eps_a)
if not os.path.exists(save_dir):
os.system('mkdir -p %s' % save_dir)
stats_log = open(save_dir + '/' + str(args.noise_rate) + '_' + str(args.eta) + '_stats.txt', 'w')
txtfile = save_dir + '/' + str(args.noise_rate) + '_' + str(args.eta) + '.txt'
if os.path.exists(txtfile):
os.system('rm %s' % txtfile)
with open(txtfile, "a") as myfile:
myfile.write('epoch: test_acc test_acc_n\n')
if args.dataset == 'cifar10':
warm_up = 10
elif args.dataset == 'cifar100':
warm_up = 30
loader = dataloader.cifar_dataloader(args.dataset, noise_mode=args.noise_mode,
noise_rate=args.noise_rate, eps = args.eps_a,noise_type = args.poison_type,
batch_size=args.batch_size, num_workers=3, \
root_dir=args.data_path, result_dir=args.result_dir, log=stats_log,
noise_file='%s/%.1f_%s.json' % (args.data_path, args.noise_rate, args.noise_mode))
poison_loader = dataloader.cifar_poisoneddataloader(args.dataset, noise_mode=args.noise_mode,
noise_rate=args.noise_rate, eps = args.eps_a, batch_size=args.batch_size, num_workers=3, \
root_dir=args.poison_data_path + '/' + str(args.eps_a), test_dir=args.poison_data_path + '/' + str(args.eps_a)+ '_test',
result_dir=args.result_dir, constraint = args.constraint_a,
poison_type = args.poison_type, log=stats_log,
noise_file='%s/%.1f_%s.json' % (args.data_path, args.noise_rate, args.noise_mode))
print('| Building net')
if args.model == 'cnn':
net = CNN(input_channel=3, n_outputs=args.num_classes).cuda()
else:
net = ResNet34().cuda()
cudnn.benchmark = True
criterion = SemiLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
CEloss = nn.CrossEntropyLoss()
all_loss = [[], []] # save the history of losses from two networks
best_acc_ = 0.0
eval_acc = 0.0
eval_acc_1 = 0.0
eval_acc_2 = 0.0
class_p = {} #seperated clean labal index from the previous epoch
num_sample = 50000 #number of training data
test_loader = loader.run(0, 'test')
eval_loader = poison_loader.run(0, 'eval_train')
testp_loader = poison_loader.run(0, 'test')
for epoch in range(args.num_epochs + 1):
lr = args.lr
if epoch >= 60:
lr /= 10
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if epoch < warm_up:
warmup_trainloader = poison_loader.run(0, 'warmup')
print('Warmup Net1')
warmup(epoch, net, optimizer, warmup_trainloader)
Pedictor_n.load_state_dict(Pedictor.state_dict())
else:
print('Data separation')
class_p, Ba_num, prob, all_loss[0] = eval_train(epoch, net, all_loss[0], class_p)
labeled_trainloader, unlabeled_trainloader = poison_loader.run(0, 'train', Ba_num, prob1)
print('Train Net1')
train(epoch, net, optimizer, labeled_trainloader, unlabeled_trainloader)
test_acc, test_acc_n, best_acc_ = test(epoch, net, best_acc_=best_acc_, save=True, )
print('test acc on test images is ', test_acc)
print('test acc on poisoned test images is ', test_acc_n)
print('best acc on test images is ', best_acc_)
with open(txtfile, "a") as myfile:
myfile.write(str(int(epoch)) + ': ' + str(test_acc) + ' ' + str(test_acc_n) + ' ' + str(best_acc_) + "\n")