-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvisualize.py
38 lines (31 loc) · 1.22 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import numpy as np
from PIL import Image
import chainer
import chainer.cuda
from chainer import Variable
def out_generated_image(gen, dis, rows, cols, seed, dst):
@chainer.training.make_extension(trigger=(1, 'epoch'))
def make_image(trainer):
np.random.seed(seed)
n_images = rows * cols
xp = gen.xp
z = Variable(xp.asarray(gen.make_hidden(n_images)))
with chainer.using_config('train', False):
x = gen(z)
x = chainer.cuda.to_cpu(x.data)
np.random.seed()
# gen_output_activation_func is sigmoid (0 ~ 1)
x = np.asarray(np.clip(x * 255, 0.0, 255.0), dtype=np.uint8)
# gen output_activation_func is tanh (-1 ~ 1)
# x = np.asarray(np.clip((x+1) * 0.5 * 255, 0.0, 255.0), dtype=np.uint8)
_, _, H, W = x.shape
x = x.reshape((rows, cols, 1, H, W))
x = x.transpose(0, 3, 1, 4, 2)
x = x.reshape((rows * H, cols * W))
preview_dir = '{}/preview'.format(dst)
preview_path = preview_dir + '/image_epoch_{:0>4}.png'.format(trainer.updater.epoch)
if not os.path.exists(preview_dir):
os.makedirs(preview_dir)
Image.fromarray(x).save(preview_path)
return make_image